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A B S T R A C T

Composite pulses occupies an honorable place in the range of quantum control
techniques, and has an advantage among them to be suitable for robust, sensitive
or any high-precision manipulation of quantum systems. The goal is to expand
the scope of the methodology born in nuclear magnetic resonance, and modern-
ize its applications. We present the leverage of this flexible method in quantum
computing, quantum sensing, quantum information processing, and polarization
optics. The latter point to the existence of a quantum-classical analogy due to the
underlying analogous mathematics.

The possibility to design robust quantum gates via broadband composite pulses
with ultrahigh-fidelity exceeding the quantum computation benchmark is remark-
able for quantum computing. Derivation of the narrowband and passband com-
posite pulses for quantum sensing applications imposes the use of SU(2) and novel
regularization approaches of optimization. Interestingly, composite pulses is also
capable of robust transitions of ultrasmall probability, and can have potential ap-
plications to deterministic single-photon emission and the DLCZ protocol well-
known in quantum information processing. Another modification leads to ultraro-
bust and ultrasensitive quantum controls of transition probability via composite
pulses, which may have essential applications for creation of ultrabroadband and
ultranarrowband conversion efficiency polarization half-wave plates. Also the sim-
ilar optimization method can be applied to design ultrarobust Z quantum gates,
equivalent to polarization π rotators in polarization optics. Composite pulses para-
meters can be utilised for construction of broadband composite nonreciprocal po-
larization wave plates and optical isolators.

We cover a wide range of research disciplines and provide a deep and broad un-
derstanding of the interdisciplinarity, flexibility and possibilities of the technique.
In this sense, composite pulses is powerful and has great prospects.
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1
I N T R O D U C T I O N

1.1 quantum coherent control techniques

A huge variety of quantum control techniques are used in many areas of physics
to manipulate the physical system. Among them few are appreciable as resonant
excitation, adiabatic passage, shaped pulses, optimal control theory, Composite
Pulses (CPs). It is also entertaining that they can be adapted to obtain new control
methods such as composite adiabatic passage and shortcut to adiabaticity. In gen-
eral, coherent control techniques differ from each other by the choice of targeted
cost parameters, hence, the resulting quality indicators are different.

Resonant excitation is the artless manipulation of the system, sensitive to the
experimental errors, providing the smallest operation run-time. Optimal control
theory and shaped pulses with proper temporal shaping of experimental paramet-
ers target the minimization of the operation run-time (fast) and robust evolution
of the system. CPs, although a little slower (moderate), occupies an honorable
place between resonant excitation and adiabatic passage (slow), due to it’s flexibil-
ity to shape the precision measure (fidelity or transition probability) in essentially
any desired manner, which is impossible with a single resonant pulse or adiabatic
technique, being the versatile tool for both robust or/and sensitive operation of the
system. No wonder that the method is sometimes called magic CPs, noteworthy
that it can provide ultrahigh accuracy even for ultrasmall probability transitions of
the system, which is discussed in detail in thesis.

1.2 rotations on the bloch sphere

The propagator of a coherently driven qubit is the solution of the Schrödinger
equation,

ih̄∂tU(t, ti) = Ĥ(t)U(t, ti), (1.1)

1
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subject to the initial condition U(ti, ti) = Î, the identity matrix. If the Hamiltonian
is Hermitian, the propagator is unitary. If the Hamiltonian is also traceless, then
the propagator has the SU(2) symmetry and can be represented as

U0 =

 a b

−b∗ a∗

 , (1.2)

where a and b are the complex-valued Cayley-Klein parameters satisfying
|a|2 + |b|2 = 1. A traceless Hermitian Hamiltonian has the form Ĥ(t) =
1
2 h̄[Ω(t) cos(ϕ)σ̂x + Ω(t) sin(ϕ)σ̂y + ∆σ̂z], where Ω(t) (assumed real and positive)
is the Rabi frequency quantifying the coupling, ϕ is its phase, and ∆ is the field-
system detuning.

On exact resonance (∆ = 0) and for ϕ = 0, we have a = cos(A/2), b =

−i sin(A/2), where A is the temporal pulse area A =
∫ t f

ti
Ω(t)dt. For a system

starting in state |1⟩, the single-pulse transition probability is p = |b|2 = sin2(A/2).

1.2.1 Rotation gate

Basically starting from TDSE (a time-dependent Shrödinger equation) for a two-
level system, one can reach the evolution operator for a single-qubit, which is
called Rabi rotation gate from AMO (atomic, molecular and optical) devices in
experimental Quantum Computing (QC) [1, 2], or theta pulse in Nuclear Magnetic
Resonance (NMR) [3]. Thus, each pulse in a Composite Pulse (CP) sequence is
considered resonant and hence it generates the propagator

U(A, ϕ) =

 cos(A/2) −ieiϕ sin(A/2)

−ie−iϕ sin(A/2) cos(A/2)

 , (1.3)

where ϕ is the phase of the coupling. SU(2) symmetry is a character for physical-
level gates [1, 4] in QC devices in contrast to U(2) quantum gates [2] in theoretical
QC. However, from a physical point of view it is more natural to use SU(2) gates,
which have det = 1 (while the determinant of the Hadamard gate is −1). The reason
is that in a closed qubit (with only two states and no ancilla states) the Hamiltonian
is symmetric, and then the propagator (i.e., the gate) is SU(2) symmetric.

Our objective is to construct the qubit rotation gate R̂y(θ) = ei(θ/2)σ̂y , where θ is
the rotation angle and σ̂y is the Pauli’s y matrix. In matrix form,

Ry(θ) =

 cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

 . (1.4)
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The rotation gate (1.4) is equivalent to the rotation gate R̂x(θ) = ei(θ/2)σ̂x , or in
matrix form,

Rx(θ) =

 cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

 . (1.5)

We shall use the gate (1.4) because it is real and because it coincides with the ubi-
quitous definition of the rotation matrix. Therefore, hereafter we drop the subscript
y for the sake of brevity.

The X or NOT gate is defined as 0 1

1 0

 = σ̂x, (1.6)

Because the determinant of this matrix is −1, it is not of SU(2) type. Instead, we
shall construct the SU(2) gate

X =

 0 1

−1 0

 , (1.7)

which is related to the gate (1.6) by a phase transformation and it is equivalent to
it. The gate (1.7) is also equivalent to the often used gate

ei(π/2)σ̂x =

 0 i

i 0

 , (1.8)

which can be obtained from Eq. (1.7) by a phase transformation too. However, we
prefer to use the gate (1.7) because it is real and also because it is a special case of
the general rotation gate (1.4).

We shall use the following form of the Hadamard gate (known as pseudo-
Hadamard form),

H = Ry(π/2) = ei(π/4)σ̂y = 1√
2

 1 1

−1 1

 . (1.9)

It is SU(2) symmetric and it is equivalent to the more common Walsh-Hadamard
form

1√
2

 1 1

1 −1

 , (1.10)
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which is not SU(2) symmetric. The gate (1.9) is equivalent to the often used SU(2)
symmetric gate (known as the Splitter gate)

Hx = ei(π/4)σ̂x = 1√
2

 1 i

i 1

 , (1.11)

which is related to it by a phase transformation. 1

A single resonant pulse of temporal area A = θϵ = θ(1+ ϵ) produces the propag-
ator R̂(θϵ) = ei[θ(1+ϵ)/2]σ̂y = R̂(θ)[1 + O(ϵ)], i.e. it is accurate up to zeroth order
O(ϵ0) in the pulse area error ϵ. Our approach is to replace the single θ pulse with
a CP sequence of pulses of appropriate pulse areas and phases, such that the over-
all propagator produces the rotation gate (1.4) with an error of higher order, i.e.
R̂(θ)[1 + O(ϵn+1)]. Then we say that the corresponding composite rotation gate is
accurate up to, and including, order O(ϵn).

1.2.2 Phase-shift gate

Indeed, R̂x(θ) can be obtained from R̂y(θ) by simple phase transformation,
R̂x(θ) = F̂(π/2)R̂y(θ)F̂(−π/2). Here F̂(ϕ) = e−i(ϕ/2)σ̂z is a phase-shift gate (up
to a global phase factor), or in matrix form,

F(ϕ) = Rz(ϕ) =

 e−iϕ/2 0

0 eiϕ/2

 :=

 1 0

0 eiϕ

 , (1.12)

which is equivalent to it up to an inefficient global factor of e−iϕ/2. It cannot be
obtained via a single theta pulse (5.1), and thus requires a circuit with two or more
θ = π rotation gates

F(ϕ) = U(π, ν + π − ϕ/2)U(π, ν) = U(π, ν)U(π, ν + π + ϕ/2). (1.13)

1 In the Quantum Information (QI) literature it is often preferred to use U(2), rather than SU(2) gates,
e.g. the Hadamard, S and T gates are all U(2) but not SU(2) gates. In a quantum circuit it does
not matter as long as the same type of gates are used in the same circuit. The reason is that the
Hadamard gate is involutory , i.d. it is equal to its inverse, and it is very convenient to write a
quantum circuit in terms of Ĥ only, rather than with Ĥ and Ĥ† = ĤT . However, from a physical
point of view it is more natural to use SU(2) gates, which have det = 1 [while the determinant
of the Hadamard gate is −1]. The reason is that in a closed qubit (with only two states and no
ancilla states) the Hamiltonian is symmetric, Ĥ(t) = 1

2 h̄[Ω(t) + ∆σ̂z], and then the propagator (i.e.
the gate) is SU(2) symmetric.
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We shall use the following forms for the Pauli-Z gate,

Z = F(π) =

 i 0

0 −i

 = ei(π/2)σ̂z :=

 1 0

0 −1

 = σ̂z, (1.14)

for the phase gate S (or P)

S = F(π/2) = 1√
2

 1 − i 0

0 1 + i

 :=

 1 0

0 i

 , (1.15)

and for the gate T (or π/8)

T = F(π/4) =

 e−i(π/8) 0

0 ei(π/8)

 :=

 1 0

0 ei(π/4)

 . (1.16)

1.3 composite pulses in nuclear magnetic resonance

CPs have been developed in NMR in the 1980s. However, similar ideas have been
introduced in Polarization Optics (PO) much earlier, in the 1940s [5–8]: by stacking
several ordinary wave plates at specific angles with respect to their fast polariza-
tion axes one can design either achromatic (broadband) polarization retarders and
rotators or (narrowband) polarization filters [5–14]. In the last two decades, CPs
have spread out to most experimental QI platforms far beyond NMR. Applications
include qubit control in trapped ions [15–22], neutral atoms [23], doped solids [24–
26], quantum dots [27–32], and NV centers in diamond [33], high-accuracy optical
clocks [34], cold-atoms interferometry [35–37], optically dense atomic ensembles
[38], magnetometry [39], optomechanics [40], etc.

CPs are classified in NMR by Wimperis [3] into broadband, narrowband and
passband classes, where he defined 1st type and 2nd type of pulses BB1, NB1, PB1

and BB2, NB2, PB2 respectively. It is common to use abbreviation from the left to
the right when the overall evolution matrix is the chronological multiplication of
the single evolutions from the right to the left.

BB1 and BB2 pulses follow

BB1(θ) : (π)ϕ1(2π)ϕ2(π)ϕ1(θ)0, (1.17)

with ϕ1 = arccos (−θ/4π) and ϕ2 = 3ϕ1,

BB2(θ) : (π)π/2(2π)ϕ2(π)π/2(θ)0, (1.18)



6 introduction

with ϕ2 = 3π/2 + θ/4.
NB1 and NB2 pulses follow

NB1(θ) : (π)ϕ1(2π)ϕ2(π)ϕ1(θ)0, (1.19)

with ϕ1 = arccos (−θ/4π) and ϕ2 = −ϕ1,

NB2(θ) : (π)π/2(2π)ϕ2(π)π/2(θ)0, (1.20)

with ϕ2 = 3π/2 − θ/4.
NB1 and NB2 pulses follow

PB1(θ) : (2π)ϕ1(4π)ϕ2(2π)ϕ1(θ)0, (1.21)

with ϕ1 = arccos (−θ/8π) and ϕ2 = −ϕ1,

PB2(θ) : (2π)π/2(4π)ϕ2(2π)π/2(θ)0, (1.22)

with ϕ2 = 3π/2 − θ/8.
A first approach to use average Hamiltonian theory and Magnus expansion of

the propagator pioneered by Tycko [41], and used by Wimperis. BB1, NB1, PB1

CPs have flat fidelity, while BB2, NB2, PB2 have alternations in fidelity and show
better property (broader or/and narrower) at the expense of precision measure.

Besides these asymmetric sequences, Jones and co-workers [42] develop time-
symmetric sequence called SCROFULOUS (Short composite rotation for undoing
length over and under shoot),

SCROFULOUS(θ) : (θ1)ϕ1(π)ϕ2(θ1)ϕ1 , (1.23)

with θ1 = arcsinc(2 cos (θ/2)/π), ϕ1 = arccos (−π cos θ1/(2θ1 sin θ/2)), ϕ2 =

ϕ1 − arccos (−π/2θ1), where unnormalized sinc function is defined as sinc(θ) =

sin θ/θ.
In the case of π rotation, one can choose θ1 = arcsinc(0) = π and

arccos (−π/2θ1) = −4π/3,

SCROFULOUS(π) : (π)π/3(π)5π/3(π)π/3. (1.24)

Thus ϕ2 − ϕ1 = 4π/3, and Tycko’s and co-workers’ [43] result can be recovered

Tycko(N = 3) : (π)0(π)2π/3(π)0, (1.25)
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for the broadband excitation without phase distortion. This leads to the division
of the broadband CPs into two sub-classes, named variable and constant rotations
[44–46].

Variable-rotation CPs (sometimes called class B) compensate parameter errors
only in the transition probability p (or the population inversion w = 2p − 1). Re-
cently in [47], several classes of arbitrarily accurate analytic CP sequences for vari-
able rotations have been presented. Constant-rotation, or phase-distortionless [43],
CPs (sometimes called class A) compensate parameter errors in both the transition
probability and the phases of the created superposition state (i.e., in the Bloch vec-
tor coherences u and v). The latter are obviously more demanding and require
longer sequences for the same order of compensation. However, in QC and QI
wherein phase relations are essential, constant rotations are clearly the ones to be
used for quantum rotation gates [42].

SCROFULOUS is the shortest constant rotation with the first order of pulse area
error compensation. BB1 is the second order constant rotation, which is outper-
formed by our shorter X5 and H5s symmetric sequences [48].

SK1 is the shortest passband CP [49], being geometric rotation gate [50], as
SCROFULOUS, also consists of three elementary pulses

SK1 : (θ)0(2π)ϕ1(2π)−ϕ1 , (1.26)

with parameter ϕ1 = arccos (−θ/4π).
In [49], two methods have been used to construct arbitrarily accurate CPs. The

Trotter-Suzuki sequences [49, 51] recover B2 = BB1, N2 = NB1 and P2 = PB1

sequences and generalize them as arbitrary accurate Bn, Nn and Pn sequences. The
Solovay-Kitaev method uses elements of the proof of the Solovay Kitaev theorem
[49, 52], relies on general properties of Hamiltonians and gives SKn sequences.
Interestingly, it was also possible to output combined broadband and SK sequences
SBn in [49].

Wimperis analytically derived two sub-families of broadband phase-
distortionless CP sequences, Fn [53, 54] and Gn [54, 55], targeting π rotations. Both
consist of the sequence of π pulses, one has no alternation in fidelity and is flat-top,
and another is family of alternating2 CPs.

Antisymmetric passband APBn sequences [56] target π rotations, proposed by
Odedra and Wimperis.

2 This means that the measure of accuracy is no longer flat and wiggles occur. Such a mechanism
can be used to enhance the property of the CP by changing the required precision benchmark.
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Possibility to derive equiangular CPs [57] can be interesting from the point of
view of optimal control. In our opinion, from the aspects of the stable and system-
atic optimization the π sequences in the CP are required.

Although concatenated pulses [58, 59] can compensate both off-resonance error
and pulse area error, there is an alternative mechanism, which provides better
performance pattern, and consists of CPs with precisely chosen detuning, pulse
area and composite phase parameters3.

Although these theoretical approaches (derivation, nesting or concatenating) for
arbitrary accurate CPs exist, they require very long sequences and operation run-
time. In this thesis we propose analytical and numerical methods for systematic
derivation of CPs, to obtain the required property with better trade-off between
operation run-time and property measure.

1.4 thesis outline

The remainder of this thesis is organized as follows.

Chapter 1 provides background information relevant to the field of research, viz.,
a detailed discussion of the major existing contributions of CPs technique in
the literature.

Chapter 2 details the application of the technique into QC, especially for the
design of ultrahigh-fidelity composite rotation gates [48], and our proposed
SU(2) approach, viz., Newton’s error correction (optimization of the sum of
the absolute squares of the errors, i.e. overall-gate error) with Monte-Carlo
simulation method (free parameters are chosen from the set of random solu-
tions).

Chapter 3 details the application of the technique for the design of ultrahigh-
fidelity composite phase gates [60] with the same method in QC.

Chapter 4 summarizes the results of narrowband and passband CP sequences,
applicable to Quantum Sensing (QS).

Chapter 5 modernizes the properties of the technique, opening new horizons for
the development of robust ultrasmall probability transitions with the applic-
ation to deterministic single-photon emission in Quantum Information Pro-
cessing (QIP).

3 Unfortunately, this is not included in the dissertation.
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Chapter 6 examines the capability of the technique for ultrarobust or ultrasens-
itive control at the little-expense of the precision due to a novel derivation
method. These novel CPs are suitable for PO applications such as ultrabroad-
band and ultranarrowband composite polarization half waveplates [61].

Chapter 7 presents the use of the methodology for the development of optical
devices, namely broadband nonreciprocal polarization waveplates and op-
tical isolators [62] in PO.

Chapter 8 concludes this thesis. First, we summarize our work. Then, we high-
light interesting aspects that we did not fully cover and provide a thorough
discussion of potential topics and areas, that may be interesting for future
research activities.





2
C O M P O S I T E P U L S E S F O R R O B U S T

U LT R A H I G H - F I D E L I T Y R O TAT I O N G AT E S

CP sequences, which produce arbitrary pre-defined rotations of a qubit on the
Bloch sphere, are presented. The composite sequences contain up to 17 pulses and
can compensate up to eight orders of experimental errors in the pulse amplitude
and the pulse duration. Composite sequences for three basic quantum gates — X
(NOT), Hadamard and arbitrary rotation — are derived. Three classes of compos-
ite sequences are presented — one symmetric and two asymmetric. They contain
as their lowest members two well-known composite sequences — the three-pulse
symmetric SCROFULOUS pulse and the four-pulse asymmetric BB1 pulse, which
compensate first and second-order errors, respectively. The shorter sequences are
derived analytically, and the longer ones numerically (instead by nesting and con-
catenation, as usually done hitherto). Consequently, the composite sequences de-
rived here match or outperform the existing ones in terms of either speed or accur-
acy, or both. For example, we derive a second-order composite sequence, which is
faster (by about 13%) than the famous BB1 sequence. For higher-order sequences
the speed-up becomes much more pronounced. This is important for QIP as the
sequences derived here provide more options for finding the sweet spot between
ultrahigh fidelity and high speed.

2.1 introduction

Quantum rotation gates, such as the Hadamard gate and the X (or NOT) gate are
central elements in any quantum circuit [2, 63, 64]. Traditionally, a general rotation
at an angle θ is implemented by a resonant pulsed field with a temporal area of
θ, hence the name θ pulses. In particular, the Hadamard gate is implemented by a
resonant π/2 pulse, and the X gate is implemented by a resonant π pulse, which
are the theoretically fastest means for producing these gates. However, resonant
driving is prone to errors in the experimental parameters, e.g. the pulse amplitude,
duration, and detuning.

11
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Various proposals have been made in order to generate rotation gates that are
resilient to experimental errors, at the expense of being longer, and hence slower.
Adiabatic techniques are the traditional remedy for tackling such errors [65]. Ever
since 1932 [66–69], adiabatic evolution via a level crossing is the ubiquitous adia-
batic method to produce complete population inversion and hence the X gate.
More recently, adiabatic evolution via a half crossing has gained popularity as
a means for producing half excitation, and hence the Hadamard gate [70–74]. This
idea has been used in a technique known as half-SCRAP (Stark-chirped rapid adia-
batic passage) [70] and the closely related two-state STIRAP (stimulated Raman
adiabatic passage) [71], which has been successfully implemented in a trapped-
ion experiment [72]. In both cases, pulse shaping and chirping are designed such
that their time dependences resemble the delayed-pulse ordering of conventional
STIRAP [75]. In a variation of these, an adiabatic technique has been proposed
[73] which generates arbitrary coherent superpositions of two states, which is con-
trolled by the initial and final ratios of the field’s amplitude and its detuning. An
extension of this half-crossing technique to three states has been experimentally
demonstrated in a trapped-ion experiment, with an error of about 1.4 × 10−4, i.e.
close to the quantum computation benchmark level [74], which was achieved by
using pulse shaping. Another proposal used a sequence of two half-crossing adia-
batic pulses split by a phase jump, which serves as a control parameter to the
created superposition state [76].

In three-state Raman-coupled qubits, a very popular technique is fractional
STIRAP [77–79], in which the Stokes pulse arrives before the pump pulse but the
two pulses vanish simultaneously. This leads to the creation of a coherent super-
position of the two end states of the chain. Tripod-STIRAP [80–82], an extension
of STIRAP wherein a single state is coupled to three other states, has also been
used for the generation of coherent superpositions of these three states or two of
them. We also note a technique for creation of coherent superposition states and
for navigation between them by quantum Householder reflections [83, 84].

While adiabatic techniques provide great robustness to parameter errors, in gen-
eral they struggle to deliver the ultrahigh fidelity required in quantum computa-
tion. A powerful alternative to achieve ultrahigh fidelity while featuring robustness
to parameter errors is the technique of CPs [44, 45]. The CP sequence is a finite train
of pulses with well-defined relative phases between them. These phases are con-
trol parameters, which are determined by the desired excitation profile. CPs can
shape the excitation profile in essentially any desired manner, which is impossible
with a single resonant pulse or adiabatic techniques. In particular, one can create a
broadband composite π pulse, which delivers transition probability of 1 not only
for a pulse area A = π and zero detuning ∆ = 0, as a single resonant π pulse,
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but also in some ranges around these values [3, 24, 44, 45, 85–93]. Alternatively,
narrowband CPs [3, 46, 89, 91, 94–99] squeeze the excitation profile around a cer-
tain point in the parameter space: they produce excitation that is more sensitive to
parameter variations than a single pulse, with interesting applications to sensing,
metrology and spatial localization. A third family of CPs — passband pulses —
combine the features of broadband and narrowband pulses: they provide highly
accurate excitation inside a certain parameter range and negligibly small excitation
outside it [3, 98, 100–103].

CPs have been developed in NMR in the 1980’s. However, similar ideas have
been introduced in PO much earlier, in the 1940’s [5–8]: by stacking several ordin-
ary wave plates at specific angles with respect to their fast polarization axes one
can design either achromatic (broadband) polarization retarders and rotators or
polarization filters [5–14, 104, 105]. In the last two decades, CPs have spread out
to most experimental QI platforms far beyond NMR. Applications include qubit
control in trapped ions [15–22], neutral atoms [23], doped solids [24–26], quantum
dots [27–32], and NV centers in diamond [33], high-accuracy optical clocks [34],
cold-atoms interferometry [35–37], optically dense atomic ensembles [38], mag-
netometry [39], optomechanics [40], etc.

There are no universally applicable CPs to all kinds of problems and physical
platforms because the requirements in different applications are different. For in-
stance, in NMR, CPs which compensate errors in very broad parameter ranges
with only modest accuracy are ubiquitous. On the contrary, in QI, very high ac-
curacy is required within some moderately large parameter ranges. CPs are par-
ticularly suitable for QI because they are quite unique in providing both ultrahigh
fidelity and resilience to experimental errors. No other quantum control method
offers this combination of high fidelity and robustness to errors and therefore, CPs
might be the key enabling control technology for high-fidelity qubit operations
which are mandatory in scalable QC.

In this chapter, we present several sets of single-qubit rotation quantum gates
constructed with CP sequences. There are two classes of composite rotations,
named variable and constant rotations [44, 45]. Variable-rotation CPs (sometimes
called Class B) compensate parameter errors only in the transition probability p (or
the population inversion w = 2p − 1). Recently [47], several classes of arbitrarily
accurate analytic composite sequences for variable rotations have been presented.
Constant-rotation, or phase-distortionless [43], CPs (sometimes called Class A) com-
pensate parameter errors in both the transition probability and the phases of the
created superposition state (i.e., in the Bloch vector coherences u and v). The latter
are obviously more demanding and require longer sequences for the same order
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of compensation. However, in QIP wherein phase relations are essential, constant
rotations are clearly the ones to be used for quantum rotation gates [42].

In this chapter, we focus at the derivation of ultrahigh-fidelity composite rota-
tion gates, including the X, Hadamard and general rotation, which compensate
pulse-area errors up to eighth order. The X and Hadamard gates are special cases
of general rotations but they are treated separately due to their importance in
QI. Our results extend earlier results on some of these gates using shorter pulse
sequences. The first phase-distortionless CP was designed by Tycko [94] which pro-
duces a composite X gate. It consists of three pulses of total nominal area of 3π and
provides a first-order error compensation. A second-order error compensation CP
was constructed by Wimperis, the well-known BB1 (broadband of type 1) pulse
[3, 90]. It consists of four pulses with a total nominal pulse area of 4π + θ and
it produces a constant rotation at an arbitrary angle θ. More recently, Wimperis
and co-workers developed several phase-distortionless anti-symmetric composite
π pulses designed for rephasing of coherence [53, 56, 106]. Jones and co-workers
have devoted a great deal of attention to composite X gates, with an emphasis of
geometric approaches for derivation of such sequences, which work up to 5 and 7
pulses [42, 55, 107, 108]. We point out that our results supplement earlier results by
our and other groups on different gates, i.e. composite quantum phase gate [109],
the CNOT [110–116], Toffoli [117], and Cn-NOT gates [117].

Composite rotation gates with a pulse area error compensation of third and
higher order have been constructed using nesting and concatenation of shorter
composite sequences. For larger error order, this procedure produces (impractical)
composite sequences of extreme length. Here we use analytic approaches and
brute-force numerics to derive three classes of composite sequences for X, Hadam-
ard and rotation gates which achieve error compensation of up to 8th order with
much shorter sequences than before.

This chapter is organized as follows. In Sec. 2.2 we explain the derivation
method. Composite π rotations, representing the X gate are presented in Sec. 2.3.
Composite implementations of the Hadamard gate are given in Sec. 2.4, and com-
posite rotation gates in Sec. 2.5. Finally, Sec. 2.6 presents the conclusions.

2.2 su(2) approach

The derivation of the composite rotation gates is done in the following manner. A
phase shift ϕ imposed on the driving field, Ω(t) → Ω(t) eiϕ, is imprinted onto the
propagator (1.2) as
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Uϕ =

 a b eiϕ

−b∗ e−iϕ a∗

 . (2.1)

A train of N pulses, each with area Ak and phase ϕk (applied from left to right),

(A1)ϕ1(A2)ϕ2(A3)ϕ3 · · · (AN)ϕN , (2.2)

produces the propagator (acting, as usual, from right to left)

U = UϕN(AN) · · ·Uϕ3(A3)Uϕ2(A2)Uϕ1(A1). (2.3)

Let us assume that the nominal (i.e. for zero error) pulse areas Ak have a system-
atic error ϵ, i.e. Ak → Ak(1 + ϵ). If all nominal pulse areas are the same, as it is the
case for many CP sequences, this is the natural assumption because the apparatus
will produce possibly imperfect but identical pulses. If the pulse areas are differ-
ent, this is also a reasonable assumption in many cases. For example, if a trapped
ion is addressed by an imperfectly pointed laser beam then it will “see” the same
systematic deviation from the perfect field amplitude (and hence pulse area) for
any chosen target pulse area. Atoms in atomic clouds in magnetooptical or dipole
traps or ions in doped solids (e.g. for optical memories) addressed by electromag-
netic fields offer another example: they will “see” different field amplitude due
to spatial inhomogeneity depending on their position in the sample, but this field
amplitude will deviate from the optimal one by the same relative systematic error
ϵ regardless of the value of the optimal amplitude if the atoms do not move much
during the duration of the CP sequence.

Our objective in this chapter is to construct the qubit rotation gate R̂y(θ) =

ei(θ/2)σ̂y (1.4). Under the assumption of a single systematic pulse area error ϵ, we
can expand the composite propagator (2.3) in a Taylor series versus ϵ. Because of
the SU(2) symmetry of the overall propagator, it suffices to expand only two of its
elements, say U11(ϵ) and U12(ϵ). We set their zero-error values to the target values,

U11(0) = cos(θ/2), U12(0) = sin(θ/2), (2.4)

and we set as many of their derivatives with respect to ϵ, in the increasing order,
as possible,

U (m)
11 (0) = 0, U (m)

12 (0) = 0, (m = 1, 2, . . . , n), (2.5)

where U (m)
jl = ∂m

ϵ Ujl denotes the mth derivative of Ujl with respect to ϵ. The largest
derivative order n satisfying Eqs. (2.5) gives the order of the error compensation
O(ϵn).
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Equations (2.4) and (2.5) generate a system of 2(n + 1) algebraic equations for
the nominal pulse areas Ak and the composite phases ϕk (k = 1, 2, . . . , N). The
equations are complex-valued and generally we have to solve 4(n + 1) equations
with the 2N free parameters (nominal pulse areas and phases). Because of the
normalization condition |U11|2 + |U12|2 = 1, an error compensation of order n
requires a CP sequence of N = 2n + 1 pulses (or N = 2n in some lucky cases).

As stated above, the derivation of the CP sequences requires the solution of
Eqs. (2.4) and (2.5). For a small number of pulses (up to about five), the set of
equations can be solved analytically. For longer sequences, Eqs. (2.4) and the first
two equations (n = 1) of Eqs. (2.5) can still be solved analytically, but the higher
orders in Eqs. (2.5) they are solved numerically. We do this by using standard
routines in Mathematica

©.

2.2.1 Quantum gate fidelity

If Eqs. (2.4) and (2.5) are satisfied, then the overall propagator can be written as

U (ϵ) = R(θ) + O(ϵn+1), (2.6)

with R(θ) = U (0). Then the Frobenius distance fidelity,

F = 1 − ∥U (ϵ)− R(θ)∥ = 1 −
√

1
4 ∑2

j,k=1

∣∣Ujk − Rjk
∣∣2, (2.7)

is of the same error order O(ϵn) as the propagator, F = 1 −O(ϵn+1). As shown by
Jones and co-workers [64] for the composite X gates, the trace fidelity,

FT = 1
2Tr [U (ϵ)R(θ)†], (2.8)

has a factor of 2 higher error order O(ϵ2n), i.e. FT = 1 − O(ϵ2n+1). The reason is
that in the Frobenius distance, all information of the actual propagator is involved,
while in the trace distance some of this information is lost. Therefore, throughout
this chapter we shall use the Frobenius distance fidelity (2.7), which is a much
more strict and unforgiving to errors fidelity measure; moreover, its error is of the
same order as the propagator error.

We note here that for variable rotations, Eqs. (2.4) and (2.5) have to be satisfied
for only one of the propagator elements, say U12. This means that with the same
number of pulses one can achieve a factor of 2 higher order of error compensation
for variable rotations than for constant rotations. However, this error compensation
applies to the transition probability only, but not to the propagator phases. For
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variable rotations the overall propagator cannot be written in the form of Eq. (2.6),
and consequently, neither of the fidelities (2.7) or (2.8) is of the form 1 − O(ϵn+1).

2.2.2 Composite pulse sequences

We have performed extensive numeric simulations which have returned numerous
solutions. We have categorized them in three types of composite sequences, one
symmetric and two asymmetric.

• Each symmetric sequence consists of a sequence of 2n − 1 nominal π pulses,
sandwiched by two pulses of areas α, with symmetrically ordered phases,

αϕ1πϕ2πϕ3 · · ·πϕn−1πϕn πϕn−1 · · ·πϕ3πϕ2αϕ1 . (2.9)

These sequences generalize the three-pulse SCROFULOUS sequence [42],
which is of this type, to more than three pulses.

• The first type of asymmetric sequences consists of a sequence of nominal π

pulses, preceded (or superseded) by a pulse of area θ,

πϕ1πϕ2πϕ3 · · ·πϕN−1θϕN . (2.10)

These sequences generalize the five-pulse BB1 sequence [3], which is of this
type, to more than five pulses.

• The second type of asymmetric sequences consists of a sequence of N − 2
nominal π pulses, preceded (or superseded) by single pulses of areas α and
β,

αϕ1πϕ2πϕ3 · · ·πϕN−1 βϕN . (2.11)

To the best of our knowledge, this type of composite sequences has not been
reported in the literature hitherto.

Below we consider these three classes of composite sequences and test their
performance by using the Frobenius distance (2.7). We consider three figures of
merit to be essential.

• The most important parameter is the order of error compensation O(ϵn). The
larger n, the broader the high-fidelity range and the larger the errors ϵ, which
can be compensated.

• The second most important parameter is the total pulse area Atot = ∑N
k=1 |Ak|.

It determines the length of the sequences and hence the speed of the gates.
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Usually, the peak Rabi frequency is limited either by the experimental ap-
paratus or by the qubit properties, e.g., too large Rabi frequency can cause
unwanted couplings to other levels or to other qubits (cross-talk). Therefore,
for a fixed peak Rabi frequency, the total pulse area determines the total
duration of the composite sequence.

• Another consideration is the number of pulses N in the sequence. Unless
there are issues with the implementation of the phase jumps, this argument
is of far less importance than the other two. However, if the phase jumps re-
quire some time to implement or cannot be implemented with high accuracy,
then sequences of fewer pulses are preferable. For this reason, we often give
several different CPs for each error order.

2.3 x (not) gate

As it is well known, such a gate (1.7) can be produced by a resonant pulse of
temporal area π. The propagator of a π pulse reads

U =

 cos(π(1 + ϵ)/2) sin(π(1 + ϵ)/2)

− sin(π(1 + ϵ)/2) cos(π(1 + ϵ)/2)

 , (2.12)

where ϵ is the pulse area error. The Frobenius distance fidelity (2.7) reads

F = 1 −
√

2
∣∣∣sin

πϵ

4

∣∣∣ . (2.13)

For comparison, the trace fidelity is

FT = 1 − 2 sin2 πϵ

4
= cos

πϵ

2
. (2.14)

Obviously the error stemming from the Frobenius distance fidelity (2.13), which is
of order O(ϵ), is far greater than the value of the error stemming from the trace
fidelity (2.14), which is of order O(ϵ2), as noted by Jones and co-workers [42].

The three types of composite sequences (5.33), (2.10), and (2.11) coalesce into
a single type, a sequence of π pulses. Below we consider these sequences, in the
increasing order of error compensation.
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2.3.1 First-order error compensation

The careful analysis of Eqs. (2.4) and (2.5) shows that the shortest possible CP
which can compensate first-order errors consists of three pulses, each with a pulse
area of π, and symmetric phases,

πϕ1πϕ2πϕ1 . (2.15)

Solving Eq. (2.4) along with Eq. (2.5) for the first derivatives gives two solutions
for the phases,

π 1
6 ππ 5

6 ππ 1
6 π, (2.16a)

π 5
6 ππ 1

6 ππ 5
6 π. (2.16b)

These two sequences generate the same propagator and hence the same fidelity.
The Frobenius distance and trace distance fidelities read

F = 1 − I1, (2.17a)

FT = 1 − I2
1 , (2.17b)

where the Frobenius distance infidelity is

I1 =

√
2
(

1 + 2 cos2 πϵ

4

)
sin2 πϵ

4
. (2.18)

Obviously, the Frobenius distance infidelity I1 is of order O(ϵ2) and it is much
larger than the trace distance infidelity I2

1 , which is of order O(ϵ4).
The Frobenius distance fidelity and the trace fidelity are plotted in Figure 2.1

for X gates produced by a single pulse and composite sequences of 3 and 5 (see
below) pulses. The three-pulse composite X gate (2.16) produces much higher fi-
delity than the single-pulse X gate. Obviously, the trace distance fidelity is much
higher than the Frobenius distance fidelity: compare the curves with labels 1 and
1T; 3 and 3T; 5 and 5T. In fact, as seen in the figure, the trace distance fidelity for
a single pulse (label 1T) almost coincides with the Frobenius distance fidelity for
the three-pulse composite sequence (label 3). With respect to the quantum compu-
tation benchmark fidelity value of 1 − 10−4, the Frobenius distance fidelity (2.17a)
for the three-pulse composite X gates of Eqs. (2.16) remains above this value in the
pulse area interval (0.992π, 1.008π), i.e. for relative errors up to |ϵ| < 0.008. For
comparison, the trace distance fidelity (2.17b) remains above this value in the pulse
area interval (0.919π, 1.081π), i.e. for relative errors up to |ϵ| < 0.081, a factor of
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Figure 2.1: Frobenius distance fidelity F (solid) and trace distance fidelity FT (dashed) of
composite X gates. The numbers N on the curves refer to composite sequences
XN listed in Table 2.1.

10 larger. This is the reason why in this chapter, we will use the much more severe
Frobenius distance fidelity.

2.3.2 Second-order error compensation

For sequences of four pulses, it becomes possible to annul the second-order deriv-
atives in Eq. (2.5). A number of solutions exist, some of which are

(2π)3χππ+χπ 1
2 ππ−χ, (2.19a)

ππ+χ(2π)3χππ+χπ 1
2 π, (2.19b)

π 1
2 πππ+χ(2π)3χππ+χ, (2.19c)

π−χπ 1
2 πππ+χ(2π)3χ, (2.19d)

where χ = arcsin
(

1
4

)
≈ 0.0804π. The second and third sequences are related to the

BB1 sequence of Wimperis [3]. Note that all these sequences have a total nominal
pulse area of 5π, and can be considered as five-pulse sequences because the effect
of (2π)3χ is the same as π3χπ3χ.

The Frobenius fidelity for all these sequences reads F = 1 − I2, with the infidel-
ity

I2 =

√
8 + 9 cos

πϵ

2
+ 3 cos2 πϵ

2

∣∣∣sin
πϵ

4

∣∣∣3 . (2.20)
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Obviously, this fidelity is accurate up to order O(ϵ2), as the error is of order O(ϵ3).
The trace fidelity reads FT = 1 − I2

2 . The trace fidelity is accurate up to order
O(ϵ5), as the error is of order O(ϵ6). Obviously, the trace infidelity is much smaller
than the Frobenius distance infidelity, as for the three-pulse composite sequences.

The same second-order error compensation, and the same fidelity, can be ob-
tained by composite sequences of five pulses of area π each,

πϕ1πϕ2πϕ3πϕ4πϕ5 . (2.21)

Hence the total pulse area is 5π, the same as the four-pulse sequences above. Be-
cause of the additional phase compared to the four-pulse sequences, various phase
choices are possible. For example, an asymmetric sequence of the kind (2.21) has
the phases ϕ1 = 0, ϕ2 = arcsin

(
14+

√
31

20

)
≈ 0.4337π, ϕ3 = π + arcsin

(
9
√

31−19
80

)
≈

1.1271π, ϕ4 = arcsin
(

9
√

31+19
80

)
≈ 0.3320π, ϕ5 = arcsin

(
14−

√
31

20

)
≈ 0.1385π.

We have derived also the symmetric sequence

πϕ1πϕ2πϕ3πϕ2πϕ1 , (2.22)

with ϕ1 = arcsin
(
1 −

√
5/8

)
≈ 0.0672π, ϕ2 = arcsin

(
(3
√

10 − 2)/8
)
≈ 0.3854π,

ϕ3 = 2ϕ2 − 2ϕ1 + π/2 ≈ 1.1364π. For these five-pulse sequences the Frobenius
infidelity I2 is given again by Eq. (2.20), and the trace infidelity by I2

2 . The re-
spective fidelities are plotted in Figure 2.1. Obviously, they are much larger than
the respective fidelities for a single pulse and the three-pulse composite sequence
(2.16).

The Frobenius distance infidelity (2.20) remains below the quantum computation
fidelity threshold 10−4 in the pulse area interval (0.964π, 1.036π), i.e. for relative
errors up to |ϵ| < 0.036. On the other hand, the trace distance infidelity I2

2 remains
above this value in the pulse area interval (0.832π, 1.168π), i.e. for relative errors
up to |ϵ| < 0.168, a factor of almost 5 larger. As for the three-pulse composite X
gate, as seen in Figure 2.1, the Frobenius distance fidelity is much more demanding
error measure as its error is much larger than the error of the trace distance fidelity.

Hereafter we will leave out the trace distance fidelity (2.8) and will use only the
Frobenius distance fidelity (2.7), because it is a much stricter measure of the gate
error.

We conclude this subsection by noting that the availability of various four- and
five-pulse symmetric and asymmetric sequences which produce the same fidelity
is not a redundancy because they may have rather different sensitivity to phase
errors, as has been shown recently for other composite sequences [118].
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2.3.3 Higher-order error compensation

For composite sequences of more than 5 pulses, the equations for the compos-
ite phases quickly become very cumbersome and impossible to solve analytically.
They repeat the pattern of the sequences of four and five pulses above: the com-
posite sequences of 2n and 2n + 1 pulses have a total pulse area of (2n + 1)π, with
all pulses in the sequence being nominal π pulses, with the exception of one of
the pulses in the 2n-pulse sequence which has a nominal pulse area of 2π. Either
sequences of 2n and 2n + 1 pulses produce error compensation of the order O(ϵn)

and identical fidelity profiles.
The 2n + 1-pulse sequences have an additional free phase which can be used to

make the composite sequence symmetric as in Eq. (5.33), viz.

πϕ1πϕ2πϕ3 · · ·πϕn−1πϕn πϕn−1 · · ·πϕ3πϕ2πϕ1 . (2.23)

The propagators generated by the symmetric composite sequences (2.23) feature
two important properties:

1. All even-order derivatives U (2k)
11 (0) of the diagonal elements in Eq. (2.5) van-

ish, and so do all odd-order derivatives U (2k+1)
12 (0) of the off-diagonal ele-

ments.

2. The remaining nonzero derivatives in Eq. (2.5) are either real or imaginary:
U (2k+1)

11 (0) are real, whereas U (2k)
12 (0) are imaginary.

Therefore, Eqs. (2.4) and (2.5) reduce to a set of n + 1 real trigonometric equations
for n+ 1 free phases. There are multiple solutions for the phases for every (2n+ 1)-
pulse composite sequence.

Two of the phases can be found analytically. The solution of the zeroth-order
Eqs. (2.4) reads

ϕn+1 =
π

2
+ 2[ϕn − ϕn−1 + ϕn−2 − ϕn−3 + · · ·+ (−)nϕ1]. (2.24)

Given this relation, the equation U (1)
11 (0) = 0 reduces to

2
n

∑
k=1

sin(Φk) = (−)n+1, (2.25)
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with

Φk = 2
k−1

∑
j=1

(−)j+1ϕj + (−)k+1ϕk

= 2[ϕ1 − ϕ2 + ϕ3 + · · ·+ (−)kϕk−1] + (−)k+1ϕk, (2.26)

from where we can find ϕn. For example, for 3, 5, and 7 pulses we have, respectively,

sin(ϕ1) + sin(2ϕ1 − ϕ2) = −1
2 , (2.27a)

sin(ϕ1) + sin(2ϕ1 − ϕ2) + sin(2ϕ1 − 2ϕ2 + ϕ3) =
1
2 , (2.27b)

sin(ϕ1) + sin(2ϕ1 − ϕ2) + sin(2ϕ1 − 2ϕ2 + ϕ3)

+ sin(2ϕ1 − 2ϕ2 + 2ϕ3 − ϕ4) = −1
2 . (2.27c)

From each of these we can find two solutions for the phase with the largest sub-
script.

The remaining n − 1 phases ϕ1, ϕ2, . . . , ϕn−1 can be determined numerically.
We have derived numerically the composite phases of symmetric sequences of

an odd number of pulses, Eq. (2.23). They are presented in Table 2.1. The fidelity
of these composite X gates is plotted in Figure 2.2. It is clear from the table and the
figure that a single pulse has very little room for errors as the high-fidelity X gate
allows for pulses area errors of less than 0.01%. The three-pulse composite X gate
offers some leeway, with the admissible error of 0.8%. The real pulse area error
correction effect is achieved with the composite sequences of 5 to 9 pulses, for
which the high-fidelity range of admissible errors increases from 3.6% to 11.7%.
Quite remarkably, errors of up to 25% can be eliminated, and ultrahigh fidelity
maintained, with the 17-pulse composite X gate. Note that these error ranges are
calculated by using the rather tough Frobenius distance fidelity (2.7). Had we use
the much more relaxed trace distance fidelity (2.8), these ranges would be much
broader, see the numbers for 1, 3 and 5 pulses above.

That said, very long sequences are barely practical because the gate is much
slower. Moreover, it is hard to imagine a quantum computer operating with 25%
pulse area error. Therefore, the composite sequences of 5, 7 and 9 pulses seems to
offer the best fidelity-to-speed ratio.

2.4 hadamard gate

The Hadamard gate (1.9) can be generated by an ideal resonant π/2 pulse, which
is, however, prone to experimental errors. In order to construct the composite
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Hadamard gate we have considered all three types of composite sequences (5.33),
(2.10), and (2.11). Below we consider these sequences, in the increasing order of
error compensation.

2.4.1 First-order error correction

The shortest pulse sequence that can provide a first-order error compensated
Hadamard gate consists of three pulses,

αϕ1πϕ2αϕ1 . (2.28)

Equations (2.4) result in the equations

− sin(α) cos(ϕ1 − ϕ2) =
1√
2
, (2.29a)

e−iϕ1 [sin(ϕ1 − ϕ2)− i cos(α) cos(ϕ1 − ϕ2)] =
1√
2
. (2.29b)

The first derivatives of Eqs. (2.5) are annulled by the single equation

2α cos(ϕ1 − ϕ2) + π = 0. (2.29c)

From Eqs. (2.29a) and (2.29c) we find

sin α

α
=

√
2

π
. (2.30)

Therefore the value of the pulse area α is given by an inverse sinc function of√
2/π, which gives α ≈ 0.6399π. Given α, we can find ϕ1 − ϕ2 from Eq. (2.29a) or

(2.29c), and then ϕ1 from

√
2 sin(ϕ1 − ϕ2) = cos(ϕ1), (2.31)

which is the real part of Eq. (2.29b) [after multiplying it by eiϕ1
√

2]. The values are
ϕ1 ≈ 1.8442π and ϕ2 ≈ 1.0587π. Therefore, this CP reads

(0.6399π)1.8442ππ1.0587π(0.6399π)1.8442π. (2.32)

In term of degrees, it reads 115◦332◦180◦191◦115◦332◦ . This composite sequence is
related to the well-known sequence SCROFULOUS [42]: 115◦62◦180◦281◦115◦62◦ ; the
two sequences can be obtained from each other by adding 90◦ to all phases in our
sequence.
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2.4.2 Second-order error correction

Second-order error compensation is obtained by a composite sequence of at least
4 pulses. A popular CP is the BB1 pulse of Wimperis [3],

BB1 = (π/2)0πχ(2π)3χπχ, (2.33)

which produces the gate (1.11), with a total pulse area of 4.5π. It can be viewed as
identical to the five-pulse sequence

(π/2)0πχπ3χπ3χπχ. (2.34)

We have derived a different, asymmetric four-pulse CP,

H4a = αϕ1πϕ2πϕ3 βϕ4 , (2.35)

where α = 0.7821π, β = 1.3914π, ϕ1 = 1.8226π, ϕ2 = 0.6492π, ϕ3 = 1.2131π,
ϕ4 = 0.3071π. This pulse has a total area of about 4.17π, i.e. it is faster than the
BB1 pulse. It is accurate up to the same order O(ϵ2) and produces essentially the
same fidelity profile as BB1.

We have also derived a five-pulse composite Hadamard gate by using the sym-
metric sequence

H5s = αϕ1πϕ2πϕ3πϕ2αϕ1 , (2.36)

with α = 0.45π, ϕ1 = 1.9494π, ϕ2 = 0.5106π, ϕ3 = 1.3179π. It delivers again the
second-order error compensation O(ϵ2), however, with a total pulse area of just
about 3.9π. Therefore it is considerably faster than the BB1 pulse, by over 13%,
while having a similar performance.

2.4.3 Higher-order error correction

Similarly to the second order, the third-order error compensation is obtained in sev-
eral different manners, requiring at least 6 pulses. The 6-pulse sequence with the
minimal pulse area of about 5.72π reads

H6a = αϕ1πϕ2πϕ3πϕ4πϕ5 βϕ6 , (2.37)

with α = 0.5917π, β = 1.1305π, and the phases given in Table 2.2. The same error
correction order is achieved with the symmetric seven-pulse sequence

H7s = αϕ1πϕ2πϕ3πϕ4πϕ3πϕ2αϕ1 , (2.38)
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with α = 0.2769π, and the phases given in Table 2.2. It produces the same fidelity
profile as the 6-pulse sequence but it is a little faster as its pulse area is about 5.55π.
Another seven-pulse composite sequence is built similarly to the BB1 sequence
(2.33),

H7w = (π/2)π/2πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7 , (2.39)

with the phases given in Table 2.2. It achieves the same error order compensation
O(ϵ3), however, with a larger total pulse area of 6.5π compared to the previous
two CPs.

Fourth-order error compensation is obtained by at least 8 pulses. The 8-pulse se-
quence with the minimal pulse area of about 7.40π reads

H8a = αϕ1πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7 βϕ8 , (2.40)

with α = 0.4954π, β = 0.9028π, and the phases are given in Table 2.2. The same
error correction order is achieved with the symmetric nine-pulse sequence

H9s = αϕ1πϕ2πϕ3πϕ4πϕ5πϕ4πϕ3πϕ2αϕ1 , (2.41)

with α = 0.2947, with the phases in Table 2.2. Its total pulse area is 7.59π. The
BB1-like nine-pulse composite sequence,

H9w = (π/2)π/2πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7πϕ8πϕ9 , (2.42)

with the phases in Table 2.2, achieves the same fourth-order error compensation
O(ϵ4), however, with the largest total pulse area of 8.5π compared to the previous
two CPs.

The same pattern is repeated for the longer pulse sequences presented in
Table 2.2: for the same order of pulse area error compensation, the fastest se-
quences, with the smallest total pulse area are either the asymmetric HNa or sym-
metric HNs sequences, and the BB1-like sequences HNw are the slowest ones.

The fidelity and the infidelity of the composite Hadamard gates of up to seventh-
order error compensation are plotted in Figure 2.3. Obviously, as the number of
pulses in the composite sequences, and hence the compensated error order, in-
crease the fidelity and infidelity profiles improve and get broader.
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2.5 general rotation gate

2.5.1 First-order error correction

The shortest pulse sequence that can provide a first-order error compensation, as
for the X and Hadamard gates, consists of three pulses,

αϕ1πϕ2αϕ1 . (2.43)

Equations (2.4) result in the equations

− sin(α) cos(ϕ1 − ϕ2) = cos(θ/2), (2.44a)

e−iϕ1 [sin(ϕ1 − ϕ2)− i cos(α) cos(ϕ1 − ϕ2)] = sin(θ/2). (2.44b)

The first derivatives of Eqs. (2.5) are annulled by the single equation

2α cos(ϕ1 − ϕ2) + π = 0. (2.44c)

From Eqs. (2.44a) and (5.41a) we find

π sin(α)
α

= 2 cos(θ/2). (2.45)

Therefore the value of the pulse area α is given by an inverse sinc function of
(2/π) cos(θ/2). Given α, we can find ϕ1 − ϕ2 from Eq. (2.44a) or (5.41a), and then
ϕ1 from

sin(ϕ1 − ϕ2) = sin(θ/2) cos(ϕ1), (2.46)

which is obtained from Eq. (2.44b).
This composite sequence is related to the SCROFULOUS CP [42], as mentioned

above. The values of the pulse area and the composite phases are given in Table 2.3.

2.5.2 More than three pulses

The five-pulse sequence,
αϕ1πϕ2πϕ3πϕ2αϕ1 , (2.47)

provides a second-order error compensation. The sequences with 7, 9, etc. pulses
have the same structure and deliver an error compensation of order 3, 4, etc. Gen-
erally, a 2n + 1-pulse symmetric sequence of this structure delivers an error com-
pensation up to order O(ϵn). Unfortunately, analytic expressions for the composite
parameters for more than three pulses are hard to obtain, if possible at all. Hence
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we have derived them numerically and their values are listed in Table 2.3. The
fidelity of these sequences behave similarly to the ones for the X and Hadamard
gates.

2.6 comments and conclusions

In this chapter we presented a number of CP sequences for three basic quantum
gates — the X gate, the Hadamard gate and arbitrary rotation gates. The composite
sequences contain up to 17 pulses and can compensate up to eight orders of experi-
mental errors in the pulse amplitude and duration. The short composite sequences
are calculated analytically and the longer ones numerically.

Three classes of composite sequences have been derived — one symmetric and
two asymmetric. For the X gate, the three classes coalesce into a single set of sym-
metric sequences of nominal π pulses presented in Table 2.1. For the Hadamard
gate, cf. Table 2.2, two of the classes contain as their lowest members two well-
known composite sequences: the three-pulse symmetric SCROFULOUS pulse [42]
and the four-pulse asymmetric BB1 pulse [3], which compensate first and second-
order pulse area errors, respectively. The third, asymmetric class of composite se-
quences, does not contain members published before. All three classes produce
essentially identical fidelity profiles for the same order of error compensation. In
general, the SCROFULOUS-like symmetric sequences HNs and the asymmetric se-
quences HNa require the least total pulse area and hence are the fastest, whereas
the asymmetric BB1-like sequences HNw are the slowest. For the general rotation
gates, the three classes behave similarly, although we have presented only the sym-
metric sequences in Table 2.3 for the sake of brevity.

The composite rotations derived here outperform the existing composite rota-
tions in terms of either speed, or accuracy, or both. Although we could not improve
the first-order SCROFULOUS sequence, we have derived second-order composite
sequences which are faster (by over 13%) than the famous BB1 sequence [3]: our
second-order error compensated Hadamard gate has a total nominal pulse area
of about 3.9π, which is substantial improvement over the BB1 pulse, which deliv-
ers the same error order with a total pulse area of 4.5π [3]. The longer composite
sequences are derived by brute numerics and they are much shorter than previ-
ous sequences with the same order of error compensation obtained by nesting and
concatenation of short sequences. For example, our nth order error-compensated X
gates are constructed by 2n + 1 nominal π pulses, which is much shorter than the
concatenated composite sequences. For example, the 5th order error compensation
is produced by a concatenated 15-pulse sequence, whereas we achieve this by an
11-pulse sequence. Similar scaling applies to the Hadamard and the rotation gates.
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The results presented in this chapter demonstrate the remarkable flexibility of
CPs accompanied by extreme accuracy and robustness to errors — three features
that cannot be achieved together by any other coherent control technique. We ex-
pect these composite sequences, in particular the X and Hadamard gates, to be
very useful quantum control tools in QI applications because they provide a vari-
ety of options to find the optimal balance between ultrahigh fidelity, error range
and speed, which may be different in different physical systems.

We note that in this chapter we have assumed an exact resonance. In many
experiments, this condition is well justified because the qubit frequency and the
frequency of the driving field are controlled extremely accurately. The fluctuations
in the Rabi frequency, deriving from fluctuations in the radiation intensity, either
due to source instabilities (typical for lasers) or spatial inhomogenuities (e.g. point-
ing errors in laser-controlled trapped ions, spatial intensity variations in rf- or
microwave-controlled doped solids, etc.) are much more significant sources of er-
rors. Nonetheless, in certain situations it may be necessary to compensate detuning
errors too and one should use CPs with double error compensation.

Besides all, the results presented in this chapter can be applied in PO to obtain
broadband polarization retarders, viz., broadband half-, quarter- and arbitrary-
wave plates with an arbitrary phase retardation. This is possible to accomplish
due to quantum-classical analogy of composite rotations on the Bloch and the
Poincaré spheres (cf. 6.2). A simple transformation between the parameters in the
rotation gate and in the Jones matrix applies and the results can be compared1. We
see the difficulty to practically construct fractional-π pulses (the first and the last
pulses, viz. α parameter in the symmetric sequences or α and β parameters in the
asymmetric sequences), which is necessary to overcome in the design of quarter-
and arbitrary-wave plates.

1 Composite phases in the rotation gate matrix and in the Jones matrix are related. Let’s compare
the results in Table 2.1 and in the article [119]. Using symmetric XN sequences φi → Ai = π with
composite phases θi → (ϕi − π/2)/2, the broadband half-wave plate is designed. XN sequences
are equivalent to the results in the article, as the absolute trace fidelity in both cases have equal
broadness range. Despite this, X5 and X11 are broader than the five and the eleven sequences in the
transition probability (equivalent to the conversion efficiency in PO), but X13 is slightly narrower
than the thirteen sequence in Table 1 in [119]. Note that, hereby, we design up to 17 CPs for half-
wave plates, up to 15 CPs for quarter-wave plates and the symmetric sequences (the best ones) for
arbitrary-wave plates. The same scheme can be used for the quarter- and arbitrary-wave plates, viz.,
φi → Ai with composite phases θi → (ϕi − π/2)/2.



30 composite pulses for robust ultrahigh-fidelity rotation gates

-0.4 -0.2 0.0 0.2 0.4
0.980

0.985

0.990

0.995

1.000

Pulse Area Error ϵ

F
id
el
it
y

1
3

5

7

9

11

13

15

17

-0.4 -0.2 0.0 0.2 0.4

10-6

10-4

0.01

1

Pulse Area Error ϵ

In
fi
d
el
it
y

1

3

5

7

9

11

13

15

17

Figure 2.2: Frobenius distance fidelity F (top) and infidelity (bottom) of composite X gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to composite se-
quences XN listed in Table 2.1.



2.6 comments and conclusions 31

-0.4 -0.2 0.0 0.2 0.4
0.980

0.985

0.990

0.995

1.000

Pulse Area Error ϵ

F
id
el
it
y

1

3

5

7

9

11

13

15

-0.4 -0.2 0.0 0.2 0.4

10-6

10-4

0.01

1

Pulse Area Error ϵ

In
fi
d
el
it
y

1

3

5

7

9

11

13

15

Figure 2.3: Frobenius distance fidelity (top) and infidelity (bottom) of composite Hadam-
ard gates produced by using the symmetric composite sequences HNs from
Table 2.2.



Table 2.1: Phases of symmetric composite sequences of N = 2n + 1 nominal π pulses, which produce the X gate with a pulse area error
compensation up to order O(ϵn). The last column gives the high-fidelity range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation
wherein the Frobenius distance fidelity is above the value 0.9999, i.e. the fidelity error is below 10−4.

Name Pulses O(ϵn) Phases ϕ1, ϕ2, . . . , ϕn (in units π) (according to (2.23)) High-fidelity error correction range

single 1 O(ϵ0) 1
2 [0.99991π, 1.00009π]

X3 3 O(ϵ) 1
6 , 5

6 [0.992π, 1.008π]

X5 5 O(ϵ2) 0.0672, 0.3854, 1.1364 [0, 964π, 1.036π]

X7 7 O(ϵ3) 0.2560, 1.6839, 0.5932, 0.8306 [0.925π, 1.075π]

X9 9 O(ϵ4) 0.3951, 1.2211, 0.7805, 1.9335, 0.4580 [0.883π, 1.117π]

X11 11 O(ϵ5) 0.2984, 1.8782, 1.1547, 0.0982, 0.6883, 0.8300 [0.843π, 1.157π]

X13 13 O(ϵ6) 0.8800, 0.6048, 1.4357, 0.9817, 0.0781, 0.5025, 1.8904 [0.807π, 1.193π]

X15 15 O(ϵ7) 0.5672, 1.4322, 0.9040, 0.2397, 0.9118, 0.5426, 1.6518, 0.1406 [0.773π, 1.227π]

X17 17 O(ϵ8) 0.3604, 1.1000, 0.7753, 1.6298, 1.2338, 0.2969, 0.6148, 1.9298, 0.4443 [0.743π, 1.257π]



Table 2.2: Phases of symmetric composite sequences of N = 2n + 1 nominal π pulses, which produce the X gate with a pulse area error
compensation up to order O(ϵn). The last column gives the high-fidelity range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation
wherein the Frobenius distance fidelity is above the value 0.9999, i.e. the fidelity error is below 10−4.

Symmetric sequences αϕ1πϕ2 · · ·πϕn πϕn+1πϕn · · ·πϕ2αϕ1

notation N O(ϵn) α ϕ1, ϕ2, . . . , ϕn (in units π) (according to (5.33)) Atot Range

H3s 3 O(ϵ) 0.6399 0.8442, 0.0587 2.28π [0.988, 1.012]π

H5s 5 O(ϵ2) 0.45 1.9494, 0.5106, 1.3179 3.90π [0.952, 1.048]π

H7s 7 O(ϵ3) 0.2769 1.6803, 0.2724, 0.8255, 1.6624 5.55π [0.905, 1.095]π

H9s 9 O(ϵ4) 0.2947 1.2711, 0.1069, 0.5283, 1.1283, 1.9884 7.59π [0.857, 1.143]π

H11s 11 O(ϵ5) 0.2985 1.7377, 0.1651, 0.9147, 0.1510, 0.9331, 1.6415 9.60π [0.814, 1.186]π

H13s 13 O(ϵ6) 0.5065 0.0065, 1.7755, 0.7155, 0.5188, 0.2662, 1.2251, 1.3189 12.01π [0.776, 1.224]π

H15s 15 O(ϵ7) 0.3213 1.2316, 0.9204, 0.2043, 1.9199, 0.8910, 0.7381, 1.9612, 1.3649 13.64π [0.740, 1.260]π

Asymmetric sequences (π/2)ϕ1πϕ2πϕ3 · · ·πϕN−1πϕN

notation N O(ϵn) α, β ϕ1, ϕ2, . . . , ϕN (in units π) (according to (2.10)) Atot Range

H5w 5 O(ϵ2) 0.5, 1.0 0.5, 1.0399, 0.1197, 0.1197, 1.0399 4.50π [0.952, 1.048]π

H7w 7 O(ϵ3) 0.5, 1.0 0.5, 1.4581, 0.7153, 0.1495, 1.3738, 0.2568, 0.7752 6.50π [0.905, 1.095]π

H9w 9 O(ϵ4) 0.5, 1.0 0.5, 0.9681, 1.4004, 0.4203, 0.0927, 0.0927, 0.4203, 1.4004, 0.9681 8.50π [0.857, 1.143]π

H11w 11 O(ϵ5) 0.5, 1.0 0.5, 0.7807, 0.1769, 1.4678, 0.1085, 1.0174, 0.2988, 0.8883, 10.50π [0.814, 1.186]π

0.5, 1.0 1.2697, 0.3773, 1.6775

H13w 13 O(ϵ6) 0.5, 1.0 0.5, 0.6106, 1.5228, 0.9960, 0.2743, 1.4857, 0.3020, 0.3020,
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1.4857, 0.2743, 0.9960, 1.5228, 0.6106 12.50π [0.776, 1.224]π

Asymmetric sequences αϕ1πϕ2πϕ3 · · ·πϕN−1 βϕN

notation N O(ϵn) α, β ϕ1, ϕ2, . . . , ϕN (in units π) (according to (2.11)) Atot Range

H4a 4 O(ϵ2) 0.7821, 1.3914 1.8226, 0.6492, 1.2131, 0.3071 4.17π [0.952, 1.048]π

H6a 6 O(ϵ3) 0.5917, 1.1305 1.5943, 0.2860, 0.8435, 1.6553, 0.7962, 0.2523 5.72π [0.905, 1.095]π

H8a 8 O(ϵ4) 0.4954, 0.9028 1.5971, 0.7674, 0.5721, 1.8487, 1.0592, 1.9512, 0.3824, 0.9846 7.40π [0.857, 1.143]π

H10a 10 O(ϵ5) 0.6041, 1.1819 1.3480, 0.9259, 0.0292, 0.7288, 0.0996, 1.3909, 0.0183, 9.79π [0.814, 1.186]π

0.9322, 0.2169, 0.7975

H12a 12 O(ϵ6) 0.4168, 0.8841 1.5817, 1.1160, 0.3751, 0.9583, 0.1333, 1.9445, 1.0381, 1.6293,

0.4845, 0.0046, 0.8278, 0.7416 11.30π [0.776, 1.224]π



Table 2.3: Pulse area α and phases of composite pulse sequences which produce rotation gates of angle θ (according to (5.33)). The area α and
all phases are given in units π. The case of θ = 1

2 π repeats the symmetric Hadamard gate already presented in Sec. 2.4; they are given
here for the sake of comparison and completeness.

3 pulses, O(ϵ) 5 pulses, O(ϵ2) 7 pulses, O(ϵ3) 9 pulses, O(ϵ4)

αϕ1πϕ2αϕ1 αϕ1πϕ2πϕ3πϕ2αϕ1 αϕ1πϕ2πϕ3πϕ4πϕ3πϕ2αϕ1 αϕ1πϕ2πϕ3πϕ4πϕ5πϕ4πϕ3πϕ2αϕ1

θ α; ϕ1, ϕ2 α; ϕ1, ϕ2, ϕ3 α; ϕ1, ϕ2, ϕ3, ϕ4 α; ϕ1, ϕ2, ϕ3, ϕ4, ϕ5

1
10 0.5061; 0.5389, 1.4892 0.4548; 0.1416, 1.0230, 1.9258 0.4625; 0.2317, 1.3366, 0.5783, 1.6821 0.5125; 1.4200, 0.3412, 1.0473, 1.7812, 0.6816
1
8 0.5096; 0.5483, 1.4865 0.4453; 0.1626, 1.0245, 1.9168 0.4500; 0.2069, 1.3222, 0.5860, 1.6970 0.5101; 1.4490, 0.3687, 1.0489, 1.7665, 0.6618
1
6 0.5169; 0.5636, 1.4819 0.4315; 0.1964, 1.0259, 1.9032 0.4277; 0.1691, 1.3020, 0.5976, 1.7183 0.5022; 1.4918, 0.4092, 1.0502, 1.7455, 0.6340
1
5 0.5242; 0.5754, 1.4782 0.4225; 0.2231, 1.0263, 1.8934 0.4090; 0.1404, 1.2886, 0.6061, 1.7334 0.4926; 1.5229, 0.4382, 1.0502, 1.7308, 0.6148
1
4 0.5375; 0.5921, 1.4726 0.4129; 0.2630, 1.0259, 1.8796 0.3803; 0.0977, 1.2717, 0.6181, 1.7536 0.4729; 1.5661, 0.4770, 1.0491, 1.7110, 0.5894
1
3 0.5653; 0.6173, 1.4628 0.4087; 0.3293, 1.0231, 1.8583 0.3336; 0.0212, 1.2505, 0.6370, 1.7836 0.4269; 1.6326, 0.5314, 1.0448, 1.6815, 0.5525
1
2 0.6399; 0.6558, 1.4413 0.4500; 0.4494, 1.0106, 1.8179 0.2769; 1.8197, 1.2275, 0.6745, 1.8376 0.2947; 1.7711, 0.6069, 1.0283, 1.6283, 0.4884
2
3 0.7365; 0.6779, 1.4155 0.5563; 0.5329, 0.9886, 1.7746 0.3410; 1.6020, 1.2252, 0.7168, 1.8923 0.1700; 0.0700, 0.6449, 1.0009, 1.5735, 0.4254
3
4 0.7925; 0.6827, 1.4000 0.6322; 0.5585, 0.9728, 1.7498 0.4269; 1.5309, 1.2317, 0.7421, 1.9230 0.2045; 0.3134, 0.6515, 0.9816, 1.5423, 0.3905
4
5 0.8288; 0.6834, 1.3895 0.6857; 0.5688, 0.9613, 1.7332 0.4947; 1.5017, 1.2386, 0.7595, 1.9436 0.2726; 0.4091, 0.6514, 0.9674, 1.5212, 0.3672
5
6 0.8542; 0.6829, 1.3819 0.7251; 0.5735, 0.9526, 1.7210 0.5474; 1.4872, 1.2446, 0.7725, 1.9586 0.3336; 0.4507, 0.6495, 0.9564, 1.5055, 0.3501
7
8 0.8874; 0.6812, 1.3717 0.7795; 0.5770, 0.9401, 1.7044 0.6234; 1.4741, 1.2542, 0.7907, 1.9795 0.4275; 0.4853, 0.6446, 0.9404, 1.4837, 0.3264
9

10 0.9083; 0.6795, 1.3650 0.8154; 0.5777, 0.9316, 1.6934 0.6759; 1.46887, 1.2613, 0.8030, 1.9935 0.4952; 0.4992, 0.6402, 0.9291, 1.4688, 0.3103
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C O M P O S I T E P U L S E S F O R R O B U S T

U LT R A H I G H - F I D E L I T Y P H A S E G AT E S

A number of CP sequences for four basic quantum phase gates — the Z, S, T
and general phase gates — are presented. The CP sequences contain up to 18
pulses and can compensate up to eight orders of experimental errors in the pulse
amplitude and duration. The short CP sequences (up to 8 pulses) are calculated
analytically and the longer ones numerically. The results presented in this article
demonstrate the remarkable flexibility of CPs accompanied by extreme accuracy
and robustness to errors — three features that cannot be simultaneously achieved
by any other coherent control technique. These CP sequences, in particular the
Z, S and T gates, can be very useful quantum control tools in quantum inform-
ation applications, because they provide a variety of options to find the optimal
balance between ultrahigh fidelity, error range and speed, which may be different
in different physical systems.

3.1 introduction

Phase coherence is of paramount importance in modern quantum information
technologies and it is one of the most significant differences between classical and
quantum computing [1, 2, 63, 64]. Phase coherence is created and controlled by
quantum phase gates, such as the Z, S and T gates, which are key elements in
any quantum circuit. Because of the vast number of such gates involved even in
moderate quantum circuits their fidelity is of crucial significance for the success of
any quantum algorithm.

Among the existing quantum control techniques capable of efficient manipula-
tion of quantum systems, composite pulse (CP) sequences [44, 45] stand out as a
very powerful tool which offers a unique combination of accuracy of operations,
robustness to experimental errors, flexibility and versatility as it can be adopted
and applied to essentially any qubit control task — a set of features that can only
be found in composite pulses. A composite pulse is actually a train of pulses with
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well defined relative phases which are used as control parameters in order to shape
the excitation profile, and generally, the propagator, in a desired manner.

The vast majority of composite pulses are designed to produce complete and par-
tial rotations on the Bloch sphere [3, 44, 45, 47, 48, 89, 90, 99]. Among these, a clear
distinction exists between the so-called variable and constant rotations. Variable
rotations start on one of the poles of the Bloch sphere and move the Bloch vector
at a particular latitude, i.e. on a particular parallel, without controlling the lon-
gitude. Constant rotations do not require a specific initial condition and produce
the desired rotation starting at any point on the Bloch sphere. In quantum control
language, the variable rotations are characterized by well-defined absolute values
(i.e. populations) of the propagator elements but not well-defined phases. Constant
rotations (or phase-distortionless rotations) are characterized by both well-defined
populations and phases of the propagator, i.e. the quantum gate. Obviously, con-
stant rotations are much more demanding to generate, but they are exactly what is
required for reliable and scalable quantum computing circuits. Over the year, vari-
able and constant composite rotations have been demonstrated on multiple occa-
sions in NMR [3, 44, 45, 85–90], trapped ions [15, 16, 18–22, 74], neutral atoms [23,
34–37], quantum dots [27–32], doped solids [24–26, 93], superconducting qubits
[120, 121], etc., featuring remarkable accuracy and robustness. A variation of the
composite idea, with the detuning rather than the phase of each constituent pulse
in the composite sequence used as the control parameter, has also been proposed
and experimentally demonstrated [122].

Very few proposals exist for composite phase gates [109]. In the present chapter,
we make a step toward filling this gap: we supplement the library of composite
pulses with composite pulses which produce arbitrary quantum phase gates, with
a focus at the most important ones for quantum information processing: the S, T
and Z gates.

An arbitrary phase shift at an angle ϕ, being rotation around z axis, can be im-
plemented by two resonant π pulses up to an undetectable global phase. However,
resonant driving is prone to errors in the experimental parameters, e.g. the pulse
amplitude, duration, and detuning. Here the phase gates are implemented as the
sequences of π rotations with specific phases. Hence, the various quantum control
techniques and proposals that make rotation gates error-resilient, are applicable in
this context. Application of composite pulses to produce well-defined phase shifts
of the two states of a qubit is presented in [109]. Here, we use analytic approaches
and brute-force numerics to derive composite sequences for Z, S, T and general
phase gates, which achieve error compensation of up to 8th order. Compared to
Ref. [109], we go a step further: by compensating all elements in a general phase-
gate matrix, we also ensure that these composite pulses are phase-distortionless.
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This chapter is organized as follows. In Sec. 3.2 we explain the derivation
method. Design and performance of phase gates are presented in Sec. 3.3. Finally,
Sec. 3.4 presents the conclusions.

3.2 su(2) approach

Our objective in this chapter is to construct the qubit phase-shift gate F̂(ϕ) =

e−i(ϕ/2)σ̂z (1.12). Under the assumption of a single systematic pulse area error ϵ, we
can expand the composite propagator (2.3) in a Taylor series versus ϵ. Because of
the SU(2) symmetry of the overall propagator, it suffices to expand only two of its
elements, say U11(ϵ) and U12(ϵ). We set their zero-error values to the target values,

U11(0) = e−iϕ/2, U12(0) = 0, (3.1)

and we set as many of their derivatives with respect to ϵ, in the increasing order,
as possible,

U (m)
11 (0) = 0, U (m)

12 (0) = 0, (m = 1, 2, . . . , n), (3.2)

where U (m)
jl = ∂m

ϵ Ujl denotes the mth derivative of Ujl with respect to ϵ. The largest
derivative order n satisfying Eqs. (3.2) gives the order of the error compensation
O(ϵn).

Equations (3.1) and (3.2) generate a system of 2(n + 1) algebraic equations for
the nominal pulse areas Ak and the composite phases ϕk (k = 1, 2, . . . , N). The
equations are complex-valued and generally we have to solve 4(n + 1) equations
with the 2N free parameters (nominal pulse areas and phases). Only the equation
(3.1) can be satisfied at least by two π pulses (see (1.13)). Taking into account
this fact, and because of the normalization condition |U11|2 + |U12|2 = 1, an error
compensation of order n requires a CP sequence of N = 2n + 2 pieces of π pulses.

As stated above, the derivation of the CP sequences requires the solution of
Eqs. (3.1) and (3.2). For a small number of pulses (up to about eight π pulses), the
set of equations can be solved analytically. For longer sequences, Eqs. (3.1) and the
first, second and third two equations (n = 3) of Eqs. (3.2) can be solved analytically,
but the higher orders in Eqs. (3.2) they are solved numerically. We do this by using
standard routines in Mathematica

©.
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3.3 broadband composite phase gates

3.3.1 Design for composite phase gates

Based on numerical evidence, we consider symmetric type (in pulse areas) of CP
sequences, designed by π pulses.

Each symmetric sequence consists of a sequence of 2n + 2 nominal π pulses,
with asymmetrically ordered phases,

πνπν+ϕ1πν+ϕ2 · · ·πν+ϕn · πν+π− 1
2 ϕπν+ϕ1+π− 1

2 ϕπν+ϕ2+π− 1
2 ϕ · · ·πν+ϕn+π− 1

2 ϕ, (3.3)

equivalent to

πν+π+ 1
2 ϕπν+ϕ1+π+ 1

2 ϕπν+ϕ2+π+ 1
2 ϕ · · ·πν+ϕn+π+ 1

2 ϕ · πνπν+ϕ1πν+ϕ2 · · ·πν+ϕn . (3.4)

These sequences generalize the initial two-pulse sequence (see (1.13)) and have sim-
ilar design. Due to this specific structure of composite phases, the equations (3.1)
are satisfied, all odd-order derivatives U (2k+1)

11 (0) of the major-diagonal elements in
Eq. (3.2) vanish, and so do all even-order derivatives U (2k)

12 (0) of the minor-diagonal
elements. Despite this fact, we call the compensation order n the maximum num-
ber m for which all major-diagonal and minor-diagonal elements are optimized
simultaneously from 1 to n. This can be obtained with the precise choice of the
available composite phases in (3.3).

From an infinite number of solutions, we choose solutions of the type (3.3) and
with a free parameter ν = 0, as the choice of relative phases ϕ1, ϕ2, . . . , ϕn is of
importance. Henceforth, we target and use a form

π0πϕ1πϕ2 · · ·πϕn · ππ− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕ · · ·πϕn+π− 1

2 ϕ, (3.5)

and other possible solutions can be obtained by choosing an arbitrary parameter ν

in (3.3) or/and by passing to the type (3.4).

3.3.2 General Phase-shift gate

As it is well known, such a gate can be produced by two resonant pulses of total
temporal area 2π (see (1.13) with ν = 0). The propagator of two pulses reads

U =

 e−iϕ/2 cos2(πϵ/2) + sin2(πϵ/2) 1
2 i(1 − e−iϕ/2) sin(πϵ)

1
2 i(1 − eiϕ/2) sin(πϵ) eiϕ/2 cos2(πϵ/2) + sin2(πϵ/2)

 , (3.6)
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where ϵ is the pulse area error. The Frobenius distance fidelity (2.7) reads for phase-
shift gate F(ϕ) = U (0)

F = 1 −
√

2
∣∣∣sin

πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ . (3.7)

For comparison, the trace fidelity is

FT = 1 − 2 sin2 πϵ

2
sin2 ϕ

4
. (3.8)

Obviously the error stemming from the Frobenius distance fidelity (3.7), which is
of order O(ϵ), is far greater than the value of the error stemming from the trace
fidelity (3.8), which is of order O(ϵ2) (as for the rotation gate).

Longer pulses have a higher order of compensation, which is noticeable in fi-
delity frames. Below we consider these sequences, in the increasing order of error
compensation.

3.3.2.1 First-order error compensation

The careful analysis of Eqs. (3.1) and (3.2) shows that the shortest possible CP
which can compensate first-order errors (both in major and minor diagonal ele-
ments) consists of four pulses, each with a pulse area of π, and asymmetric phases,
with the structure similar to the two pulses,

π0πϕ1ππ− 1
2 ϕπϕ1+π− 1

2 ϕ. (3.9)

Solving Eq. (3.1) along with Eq. (3.2) for the first derivatives gives two solutions
for the phases,

π0π− 1
4 ϕππ− 1

2 ϕπ 3
4 π− 1

2 ϕ, (3.10a)

π0π 3
4 ϕππ− 1

2 ϕπ 7
4 π− 1

2 ϕ. (3.10b)

These two sequences generate the same propagator and hence the same fidelity.
The Frobenius distance and trace distance fidelities read

F = 1 −
√

2
∣∣∣sin2 πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ , (3.11a)

FT = 1 − 2 sin4 πϵ

2
sin2 ϕ

4
. (3.11b)

Obviously, the Frobenius distance infidelity for four sequences is of order O(ϵ2)

and it is much larger than the trace distance infidelity, which is of order O(ϵ4). The
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trace distance fidelity is much higher than the Frobenius distance fidelity, similar
to rotation gates. With respect to the quantum computation benchmark fidelity
value of 1 − 10−4, the Frobenius distance fidelity (3.11a) for the four-pulse com-
posite Z4 gates of Eqs. (3.10) remains above this value in the pulse area interval
(0.9936π, 1.0064π), i.e. for relative errors up to |ϵ| < 0.0064 to be more precise.
For comparison, the trace distance fidelity (3.11b) remains above this value in the
pulse area interval (0.936π, 1.064π), i.e. for relative errors up to |ϵ| < 0.064, a factor
of 10 larger. Again we notice that the Frobenius distance fidelity is a much more
stringent measure of quality.

For four-pulse composite S4 gate, the Frobenius interval is (0.9913π, 1.0087π)

with the relative errors up to |ϵ| < 0.0087, and the trace interval is (0.913π, 1.087π)

with the relative errors up to |ϵ| < 0.087, a factor of 10 larger. For four-pulse
composite T4 gate, the Frobenius interval is (0.9879π, 1.0121π) with the relative
errors up to |ϵ| < 0.0121, and the trace interval is (0.878π, 1.122π) with the relative
errors up to |ϵ| < 0.122, a factor of 10 larger.

Both the Frobenius and the trace distance fidelities depend on the phase flip
angle ϕ. The pulse area intervals for the four-pulse composite S4 gates are larger
than for the four-pulse composite Z4 gates and smaller than for the four-pulse
composite T4 gates. This monotonic pattern persists for longer sequences as well.

3.3.2.2 Second-order error compensation

For sequences of six-π pulses, it becomes possible to annul also the second-order
derivatives in Eq. (3.2). Design of this asymmetric sequence make it possible to
derive analytic solutions

πϕ0πϕ1πϕ2πϕ0+π− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕ, (3.12)

The careful analysis of these type of sequences shows that they can be written in a
compact form as

πχ(2π)0πχ+π− 1
2 ϕ(2π)π− 1

2 ϕ, (3.13a)

ππ+ 1
2 ϕ−χ(2π)0π−χ(2π)π− 1

2 ϕ, (3.13b)

(2π)0ππ− 1
2 ϕ+χ(2π)π− 1

2 ϕπ−ϕ+χ, (3.13c)

(2π)0π−χ(2π)π− 1
2 ϕπ−χ+π− 1

2 ϕ, (3.13d)

where χ = 1
4 ϕ + arcsin

(
1
2 sin

(
1
4 ϕ

))
.
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The Frobenius distance and trace distance fidelities for these second-order se-
quences read

F = 1 −
√

2
∣∣∣sin3 πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ , (3.14a)

FT = 1 − 2 sin6 πϵ

2
sin2 ϕ

4
. (3.14b)

3.3.2.3 Third-order error compensation

Nullification of the third-order derivatives in Eq. (3.2) as well, requires eight-π
pulses. Here, in contrast to the rotation gates, the composite phase gates with
eight pulses

πϕ0πϕ1πϕ2πϕ3πϕ0+π− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕπϕ3+π− 1

2 ϕ, (3.15)

can be simplified giving analytic solutions. Careful analysis of these type of se-
quences shows that they can be written in a compact form as

πχ(2π)0πχ+π− 1
4 ϕπχ+π− 1

2 ϕ(2π)π− 1
2 ϕπχ− 3

4 ϕ, (3.16a)

π−χ+π+ 1
4 ϕ(2π)0π−χπ−χ− 1

4 ϕ(2π)π− 1
2 ϕπ−χ+π− 1

2 ϕ, (3.16b)

(2π)0πχ+π− 1
4 ϕπχ+π− 1

2 ϕ(2π)π− 1
2 ϕπχ− 3

4 ϕπχ−ϕ, (3.16c)

(2π)0π−χπ−χ− 1
4 ϕ(2π)π− 1

2 ϕπ−χ+π− 1
2 ϕπ−χ+π− 3

4 ϕ, (3.16d)

πχ+ 1
4 ϕπχ(2π)0πχ+π− 1

4 ϕπχ+π− 1
2 ϕ(2π)π− 1

2 ϕ, (3.16e)

π−χ+π+ 1
2 ϕπ−χ+π+ 1

4 ϕ(2π)0π−χπ−χ− 1
4 ϕ(2π)π− 1

2 ϕ, (3.16f)

where χ = 1
8 ϕ + arcsin

(
1
2 sin

(
1
8 ϕ

))
. The Frobenius distance and trace distance

fidelities for these third-order sequences read

F = 1 −
√

2
∣∣∣sin4 πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ , (3.17a)

FT = 1 − 2 sin8 πϵ

2
sin2 ϕ

4
. (3.17b)

3.3.2.4 Higher-order error compensation

For CP sequences of more than eight-π pulses, the equations for the composite
phases quickly get very bulky and unattainable to guess analytically. General form
for these sequences is (3.5). Despite this, they can be written in a concise form.
They reiterate the pattern of the sequences of four, six and eight pulses above: the
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CP sequences of 2n + 2 pulses have a total pulse area of (2n + 2)π, with all pulses
in the sequence being nominal π pulses. Sequences of 2n + 2 pulses produce error
compensation of the order O(ϵn) and fidelity profiles

F ∼= 1 −
√

2
∣∣∣sinn+1 πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ , (3.18a)

FT
∼= 1 − 2 sin2n+2 πϵ

2
sin2 ϕ

4
, (3.18b)

where fidelities are sensitive to the choice of the composite phases and are ap-
proximately equal to their precise values. This type of composite phase gates, the
precision of which deviates from the theoretically optimal accuracy (3.18), which
is too significant for sequences with twelve-π and fourteen-π, but has the most
concise form and shows a structural form for arbitrary phase shift angles. Design
of this sequences is shown in the next indent.

We have derived numerically the composite phases for higher order phase gates.
The fourth-order compensating ten-π sequences can be written in a compact form

(3π)0πϕ3πϕ4(3π)π− 1
2 ϕπϕ3+π− 1

2 ϕπϕ4+π− 1
2 ϕ. (3.19)

For brevity, we release other configurations with arrangements between 3π pulse
and π pulses, because all these designs have equal total pulse area, i.e. operation
run-time. The reader can obtain such solutions by interchanging pulses in the
sequence similar to (3.10), (3.13) and (3.16). The fifth-order compensating twelve-π
sequences can be written in a compact form

(3π)0πϕ3πϕ4πϕ4−ϕ3− 1
4 ϕ(3π)π− 1

2 ϕπϕ3+π− 1
2 ϕπϕ4+π− 1

2 ϕπϕ4−ϕ3+π− 3
4 ϕ, (3.20)

and the sixth-order compensating fourteen-π sequences can be written in a com-
pact form

(4π)0πϕ4πϕ5πϕ6(4π)π− 1
2 ϕπϕ3+π− 1

2 ϕπϕ4+π− 1
2 ϕπϕ5+π− 3

4 ϕ. (3.21)

The composite phases for this type of composite phase gates for arbitrary phase
flip angles are presented in Table 3.4. The structure of these sequences corresponds
to (3.3) with ν = 0 and zero first phases for long sequences, i.e. with accordance to
(3.10a), (3.13d), (3.16d), (3.19), (3.20) and (3.21). Note that the 3π and 4π pulses in
the CP sequence are poor candidates for designing longer phase gates with higher
order of compensation.
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We have derived numerically another type of sequences consisting of only π

and 2π pulses. Their precision exactly matches the theoretically optimal accuracy
(3.18). The fourth-order compensating ten-π sequences can be written in a form

π0(2π)ϕ1πϕ3πϕ4ππ− 1
2 ϕ(2π)ϕ1+π− 1

2 ϕπϕ3+π− 1
2 ϕπϕ4+π− 1

2 ϕ. (3.22)

For brevity, we release other configurations with arrangements between 2π pulse
and π pulses, because all these designs have equal total pulse area, i.e. operation
run-time. The reader can obtain such solutions by interchanging pulses in the
sequence similar to (3.10), (3.13) and (3.16).

The fifth-order compensating twelve-π sequences can be written in a form

(2π)0(2π)ϕ2πϕ4πϕ4− 1
4 ϕ(2π)π− 1

2 ϕ(2π)ϕ2+π− 1
2 ϕπϕ4+π− 1

2 ϕπϕ4+π− 3
4 ϕ, (3.23)

and the sixth-order compensating fourteen-π sequences can be written in a form

π0(2π)ϕ1(2π)ϕ3πϕ5πϕ6ππ− 1
2 ϕ(2π)ϕ1+π− 1

2 ϕ(2π)ϕ3+π− 1
2 ϕπϕ5+π− 1

2 ϕπϕ6+π− 1
2 ϕ. (3.24)

Similarly, the seventh-order compensating sixteen-π sequences can be written in
a form

(2π)0(2π)ϕ2(2π)ϕ4πϕ6πϕ6− 1
4 ϕ(2π)π− 1

2 ϕ(2π)ϕ2+π− 1
2 ϕ(2π)ϕ4+π− 1

2 ϕπϕ6+π− 1
2 ϕπϕ6+π− 3

4 ϕ,
(3.25)

and the eighth-order compensating eighteen-π sequences can be written in a form

π0(2π)ϕ1(2π)ϕ3(2π)ϕ5πϕ7πϕ8ππ− 1
2 ϕ·

· (2π)ϕ1+π− 1
2 ϕ(2π)ϕ3+π− 1

2 ϕ(2π)ϕ5+π− 1
2 ϕπϕ7+π− 1

2 ϕπϕ8+π− 1
2 ϕ.

(3.26)

We have derived numerically the composite phases of this type of sequences of
an even number of pulses. They are presented in Tables 3.1, 3.2 and 3.3 for Z, S
and T gates correspondingly. The fidelities of these composite Z, S and T gates are
plotted in Figures 3.1, 3.2, 3.3 respectively.

It can be seen from the tables and figures that two pulses have very little room for
error, since high-fidelity Z, S and T gates allow pulse area errors of less than 0.01%,
about 0.01%, about 0.02%, respectively. The four-pulse composite phase gate offers
some leeway, with the admissible error of 0.6%, 0.9% and 1.2% for Z, S and T cases.
The significant pulse area error correction effect is achieved with the CP sequences
of 6 to 10 pulses, for which the high-fidelity range of admissible errors increases
from 3% to 10.1% for Z, from 3.6% to 11.5% for S, and from 4.5% to 13.1% for T.
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Figure 3.1: Frobenius distance fidelity F (top) and infidelity (bottom) of composite Z gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to CP sequences ZN
listed in the Table 3.1.

Quite notably, errors of up to 23.4%, 25.1% and 27.1% can be eliminated for Z, S
and T, and ultrahigh fidelity maintained, with the 18-pulse composite phase gate.
Note that these error ranges are calculated by using the rather tough Frobenius
distance fidelity (2.7). Again, had we used the much more relaxed trace distance
fidelity (2.8), these ranges would be much broader. Table 3.4 presents composite
pulse parameters of general phase gates for different phase angles.

Hereby, very long sequences are barely practical because the gate is much slower.
The quantum computer is not required to operate with a pulse area error of 23%
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Figure 3.2: Frobenius distance fidelity F (top) and infidelity (bottom) of composite S gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to CP sequences SN
listed in the Table 3.2.
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Figure 3.3: Frobenius distance fidelity F (top) and infidelity (bottom) of composite T gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to CP sequences TN
listed in the Table 3.3.



Table 3.1: Phases of asymmetric composite sequences of N = 2n + 2 nominal π pulses, which produce the Z gate with a pulse area error
compensation up to order O(ϵn). The last column gives the high-fidelity range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation
wherein the Frobenius distance fidelity is above the value 0.9999, i.e. the fidelity error is below 10−4.

Name Pulses O(ϵn) Phases ϕ0, ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕ2n+1 (in units π) High-fidelity

(according to (3.3)) error correction range

two 2 O(ϵ0) 0, 1
2 [0.99994π, 1.00006π]

Z4 4 O(ϵ) 0, 7
4 , 1

2 , 1
4 [0.994π, 1.006π]

Z6 6 O(ϵ2) 0, 0, 1.6350, 1
2 , 1

2 , 0.1350 [0.970π, 1.030π]

Z8 8 O(ϵ3) 0, 0, 1.8137, 1.5637, 1
2 , 1

2 , 0.3137, 0.0637 [0.936π, 1.064π]

Z10 10 O(ϵ4) 0, 1.0992, 1.0992, 1.8315, 0.0203, 1
2 , 1.5992, 1.5992, 0.3315, 0.5203 [0.899π, 1.101π]

Z12 12 O(ϵ5) 0, 0, 0.4492, 0.4492, 1.4099, 1.1599, 1
2 , 1

2 , 0.9492, 0.9492, 1.9099, 1.6599 [0.862π, 1.138π]

Z14 14 O(ϵ6) 0, 0.7815, 0.7815, 1.9963, 1.9963, 0.8915, 0.3245, 1
2 , 1.2815, 1.2815, 0.4963,

0.4963, 1.3915, 0.8245 [0.823π, 1.177π]

Z16 16 O(ϵ7) 0, 0, 1.8969, 1.8969, 1.0586, 1.0586, 0.0214, 1.7714, 1
2 , 1

2 , 0.3969, 0.3969, 1.5586,

1.5586, 0.5214, 0.2714 [0.795π, 1.205π]

Z18 18 O(ϵ8) 0, 0.1421, 0.1421, 1.0834, 1.0834, 0.5572, 0.5572, 1.4991, 1.0352, 1
2 , 0.6421, 0.6421,

1.5834, 1.5834, 1.0572, 1.0572, 1.9991, 1.5352 [0.766π, 1.234π]



Table 3.2: Phases of asymmetric composite sequences of N = 2n + 2 nominal π pulses, which produce the S gate with a pulse area error
compensation up to order O(ϵn). The last column gives the high-fidelity range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation
wherein the Frobenius distance fidelity is above the value 0.9999, i.e. the fidelity error is below 10−4.

Name Pulses O(ϵn) Phases ϕ0, ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕ2n+1 (in units π) High-fidelity

(according to (3.3)) error correction range

two 2 O(ϵ0) 0, 3
4 [0.99988π, 1.00012π]

S4 4 O(ϵ) 0, 15
8 , 3

4 , 5
8 [0.991π, 1.009π]

S6 6 O(ϵ2) 0, 0, 1.8137, 3
4 , 3

4 , 0.5637 [0.964π, 1.036π]

S8 8 O(ϵ3) 0, 0, 1.9064, 1.7814, 3
4 , 3

4 , 0.6564, 0.5314 [0.926π, 1.074π]

S10 10 O(ϵ4) 0, 0.8226, 0.8226, 1.9152, 0.4416, 3
4 , 1.5726, 1.5726, 0.6652, 1.1916 [0.885π, 1.115π]

S12 12 O(ϵ5) 0, 0, 1.3587, 1.3587, 0.3367, 0.2117, 3
4 , 3

4 , 0.1087, 0.1087, 1.0867, 0.9617 [0.847π, 1.153π]

S14 14 O(ϵ6) 0, 0.8197, 0.8197, 1.6756, 1.6756, 0.7586, 1.1000, 3
4 , 1.5697, 1.5697, 0.4255,

0.4255, 1.5086, 1.8500 [0.811π, 1.189π]

S16 16 O(ϵ7) 0, 0, 1.9466, 1.9466, 1.1420, 1.1420, 0.1251, 0.0001, 3
4 , 3

4 , 0.6966, 0.6966, 1.8920,

1.8920, 0.8751, 0.7501 [0.778π, 1.222π]

S18 18 O(ϵ8) 0, 0.3453, 0.3453, 1.4636, 1.4636, 0.2616, 0.2616, 1.3543, 0.0643, 3
4 , 1.0953, 1.0953,

0.2136, 0.2136, 1.0116, 1.0116, 0.1043, 0.8143 [0.749π, 1.251π]



Table 3.3: Phases of asymmetric composite sequences of N = 2n + 2 nominal π pulses, which produce the T gate with a pulse area error
compensation up to order O(ϵn). The last column gives the high-fidelity range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation
wherein the Frobenius distance fidelity is above the value 0.9999, i.e. the fidelity error is below 10−4.

Name Pulses O(ϵn) Phases ϕ0, ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕ2n+1 (in units π) High-fidelity

(according to (3.3)) error correction range

two 2 O(ϵ0) 0, 7
8 [0.99977π, 1.00023π]

T4 4 O(ϵ) 0, 31
16 , 7

8 , 13
16 [0.988π, 1.012π]

T6 6 O(ϵ2) 0, 0, 1.9064, 7
8 , 7

8 , 0.7814 [0.955π, 1.045π]

T8 8 O(ϵ3) 0, 0, 1.9531, 1.8906, 7
8 , 7

8 , 0.8281, 0.7656 [0.912π, 1.088π]

T10 10 O(ϵ4) 0, 1.1086, 1.1086, 0.0218, 0.2593, 7
8 , 1.9836, 1.9836, 0.8968, 1.1343 [0.869π, 1.131π]

T12 12 O(ϵ5) 0, 0, 0.5488, 0.5488, 1.5386, 1.4761, 7
8 , 7

8 , 1.4238, 1.4238, 0.4136, 0.3511 [0.828π, 1.172π]

T14 14 O(ϵ6) 0, 0.9406, 0.9406, 0.2214, 0.2214, 1.1532, 1.3379, 7
8 , 1.8156, 1.8156, 1.0964,

1.0964, 0.0282, 0.2129 [0.791π, 1.209π]

T16 16 O(ϵ7) 0, 0, 1.9724, 1.9724, 0.7247, 0.7247, 1.7171, 1.6546, 7
8 , 7

8 , 0.8474, 0.8474, 1.5997,

1.5997, 0.5921, 0.5296 [0.758π, 1.242π]

T18 18 O(ϵ8) 0, 0.9424, 0.9424, 0.5711, 0.5711, 1.3429, 1.3429, 0.3645, 0.6381, 7
8 , 1.8174, 1.8174,

1.4461, 1.4461, 0.2179, 0.2179, 1.2395, 1.5131 [0.728π, 1.272π]



Table 3.4: Phases of composite pulse sequences which produce phase gates of angle ϕ (according to (3.3)). The all phases are given in units π.
The cases of ϕ = π, ϕ = 1

2 π and ϕ = 1
4 π repeat the asymmetric Z, S and T gates respectively, already presented in Subsec. 3.3.2; they

are given here for the sake of comparison and completeness.

4 pulses, O(ϵ) 6 pulses, O(ϵ2) 8 pulses, O(ϵ3) 10 pulses, O(ϵ4) 12 pulses, O(ϵ5) 14 pulses, O(ϵ6)

ϕ ϕ1 ϕ2 ϕ2, ϕ3 ϕ3, ϕ4 ϕ3, ϕ4, ϕ5 ϕ4, ϕ5, ϕ6

(see (3.10a)) (see (3.13d)) (see (3.16d)) (see (3.19)) (see (3.20)) (see (3.21))

1
16

127
64 = 1.984375 1.9766 1.9883, 1.9727 0.9980, 0.9883 1.0316, 1.7227, 0.6755 0.9995, 0.9960, 0.9857

1
12

95
48 = 1.9791(6) 1.9688 1.9844, 1.9635 0.9974, 0.9844 1.0342, 1.6996, 0.6446 0.9993, 0.9947, 0.9809

1
8

63
32 = 1.96875 1.9531 1.9766, 1.9453 0.9961, 0.9765 1.0379, 1.6646, 0.5955 0.9990, 0.9922, 0.9716

1
6

47
24 = 1.958(3) 1.9375 1.9688, 1.9271 0.9948, 0.9687 1.0405, 1.6378, 0.5556 0.9987, 0.9895, 0.9620

1
4

31
16 = 1.9375 1.9064 1.9531, 1.8906 0.9922, 0.9530 1.0439, 1.5966, 0.4901 0.9980, 0.9843, 0.9431

1
3

23
12 = 1.91(6) 1.8754 1.9375, 1.8542 0.9895, 0.9371 1.0459, 1.5642, 0.4349 0.9974, 0.9790, 0.9240

1
2

15
8 = 1.875 1.8137 1.9064, 1.7814 0.9842, 0.9050 1.0477, 1.5126, 0.3399 0.9961, 0.9684, 0.8855

2
3

11
6 = 1.8(3) 1.7529 1.8754, 1.7087 0.9787, 0.8721 1.0479, 1.4703, 0.2558 0.9947, 0.9575, 0.8460

3
4

29
16 = 1.8125 1.7229 1.8599, 1.6724 0.9759, 0.8552 1.0475, 1.4512, 0.2162 0.9941, 0.9520, 0.8259

5
6

43
24 = 1.791(6) 1.6932 1.8444, 1.6361 0.9731, 0.8381 1.0470, 1.4332, 0.1779 0.9934, 0.9464, 0.8056

7
8

57
32 = 1.78125 1.6785 1.8368, 1.6180 0.9717, 0.8294 1.0467, 1.4245, 0.1591 0.9930, 0.9436, 0.7953

11
12

85
48 = 1.7708(3) 1.6639 1.8291, 1.5999 0.9702, 0.8206 1.0463, 1.4161, 0.1405 0.9927, 0.9407, 0.7849

15
16

113
64 = 1.765625 1.6566 1.8252, 1.5908 0.9695, 0.8161 1.0462, 1.4119, 0.1314 0.9925, 0.9393, 0.7797

1 7
4 = 1.75 1.6350 1.8137, 1.5637 0.9673, 0.8027 1.0456, 1.4000, 0.1041 0.9920, 0.9350, 0.7638
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or more. Thereby, the CP sequences of 6, 8 and 10 pulses seems to offer the best
fidelity-to-speed ratio.

3.4 comments and conclusions

In this chapter we presented a number of CP sequences for four basic quantum
gates — the Z gate, the S gate, the T gate and general phase gates. The CP se-
quences contain up to 18 pulses and can compensate up to eight orders of experi-
mental errors in the pulse amplitude and duration. The short CP sequences (up to
8 pulses) are calculated analytically and the longer ones numerically.

Only one class of asymmetric CP sequences, consisting of nominal π pulses
with asymmetric phases (cf. (3.3) and (3.4)), has the role to provide composite
phase gates. Although longer composite phase gates can be derived numerically,
their fidelity profiles have analytic dependence on the pulse area error, correspond
to (3.18) and (3.18a), and show trigonometric relationship with phase-shift angles.
Similar class of asymmetric CP sequences for phase gates is derived in [109], where
they are build from the θ rotation gates, having twice of total pulse area of them
(similar to nesting approach). For this reason, four, eight, twelve, and sixteen CPs
are missing, but six, ten, fourteen, and eighteen CPs are given by the simple ana-
lytic formula (are more convenient to apply) and have performance equal to the
composite gates shown in this chapter. This does not apply to composite phase
gates constructed by the universal CPs [93] in [109]1.

For the general phase gates, we have presented another type of the asymmetric
sequences in Table 3.4 for the sake of brevity.

The results presented in this chapter demonstrate the remarkable flexibility of
CPs accompanied by extreme accuracy and robustness to errors — three features
that cannot be achieved together by any other coherent control technique. We ex-
pect these CP sequences, in particular the Z, the S and the T gates, to be very
useful quantum control tools in QI applications, because they provide a variety
of options to find the optimal balance between ultrahigh fidelity, error range and
speed, which may be different in different physical systems.

Besides all, the results presented in this chapter can be applied into PO to ob-
tain broadband polarization rotators using stacked single polarization half-wave
plates with the optical axes rotated by precisely chosen rotation angles (composite
phases). It is able to be done due to quantum-classical analogy of composite rota-

1 The target matrix differs from our (1.12) by changing the phase ϕ → −ϕ, hence, to compare the
results from [109] with ours, it is necessary to change the sign of all phases, viz., the parameters
ϕk → −ϕk and χ → χ = −ϕk + π − ϕ/2 in the article. Hereby, we design twice-even number of CP
sequences for composite phase gates, in addition to twice-odd number of pulses (already existing).



54 composite pulses for robust ultrahigh-fidelity phase gates

tions on the Bloch and the Poincaré spheres (cf. 6.2). Hereby, we demonstrate the
possibility to design the broadband polarization rotators with π/2, π/4, π/8 and
arbitrary phase shift angles, by up to 18 CP sequences2.

2 Composite phases in the rotation gate matrix and in the Jones matrix are related. Let’s compare the
results in the Table 3.1 and in the article [119]. Using asymmetric ZN sequences φi → Ai = π with
composite phases θi → ϕi/2, the broadband α = π/2 (as the target rotation angle is assigned in the
article) rotator is designed. Z6 sequence is equivalent to the six sequence in the article in the Table 2
of [119], as the absolute trace fidelity in both cases have equal broadness range. Z10 outperform the
ten sequence in the ultrahigh precision and even in the 99.9% trace fidelity, but since high-precision
(90%) is necessary in PO, the ten sequence is comparable with our Z14 sequence. Fourteen sequence
is slightly worse than Z12. Eighteen and fourteen sequences have equal performance (may be due
to over-approximation of composite phases). Despite this, to obtain the results for α = π/4 (S
gate), α = π/8 (T gate) and arbitrary polarization rotators, it is necessary to apply the structure
(θ1, θ2, . . . , θn+1, θ1 + α/2, θ2 + α/2, . . . , θn+1 + α/2) of the composite phases (where the first few
rotation angles can be taken as zero and n is the broadness order) and to compute the phases. Note
that, hereby, we demonstrate the possibility to design broadband arbitrary rotators by up to 18 CP
sequences.



4
N A R R O W B A N D A N D PA S S B A N D

C O M P O S I T E P U L S E S : A P P L I C AT I O N T O

Q U A N T U M S E N S I N G

4.1 introduction

Quantum rotation gates [1, 2], are the key elements in experimental QC. Inter-
estingly, a Rabi rotation gate, being SU(2), is in the heart of various QC devices,
especially AMO (atomic, molecular, optical), while suggested theoretical quantum
gates are U(2). Furthermore, a quantum circuit designed by multiple quantum
gates represents a composite rotation on a Bloch sphere. X (NOT) and Hadamard
rotation gates are two special cases of a single θ pulse or rotation, when θ = π and
θ = π/2, respectively. On contrary, phase gates require at least two rotations. A
method that reveals the benefits of composite rotation gates is CPs.

Although CPs, first, have been used in PO [5, 6], the name, classification and
development of the technique belongs to the area of NMR [3, 44, 45, 85, 86, 89,
123, 124]. Being efficient and versatile control technique, CPs may easily adapt to
various requirements. This feature manifests in the wide range of applications in
both quantum and classical physics — qubit control in trapped ions [15–19, 21, 22],
neutral atoms [23], doped solids [24, 25], NV centers in diamond [33, 125], and
quantum dots [27–30], high-accuracy optical clocks [34], cold-atom interferometry
[35–37], optically dense atomic ensembles [38], magnetometry [39], optomechanics
[40], Josephson junctions [126], magnetic resonance imaging (MRI) [127], NMR
quantum computation [128], entanglement generation [125], teleportation [15, 129,
130], molecular spectroscopy [131] etc. The possibility of applying a deep neural
network for design of CPs is distinguished by its modernity [132].

A CP sequence is a finite train of pulses with specified pulse areas (θ-s) and
relative phases (ϕ-s), and in a specific order. Since the initial target in NMR was a
composite π pulse with the structure known beforehand (requires a sequence of
π pulses), composite phases were in the foreground. Considering various engin-
eering perspectives, it is common to divide CPs into the three main branches —

55
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broadband (BB), narrowband (NB) and passband (PB) classes, given by Wimperis
[3, 89].

From the point of view of mathematics, the CPs can be represented as com-
posite rotations on the Bloch-Poincaré sphere. This leads to the second kind of
classification of CPs — variable (class B) and constant (phase-distortionless, fully-
compensating or class A) rotations, given by Levitt [44–46].

Constant rotation CPs are independent of the initial state and not permit distor-
tions of the phase of the overall propagator in the rotation axis over a wide error
band, if not over the entire error range. Combining in one word, they are “uni-
versal” over the entire Bloch sphere, which, for instance, makes them applicable
to quantum computation [48]. In NMR and magnetic resonance imaging (MRI),
constant rotations are often used in advanced, phase-sensitive (require phase cyc-
ling) two-dimensional NMR experiments, like COSY [59] and TOCSY, providing a
powerful tool for the determination of the chemical structure of molecules.

BB CPs act as TARGET operator in a broad range of errors around 0 value (flat-top
fidelity), and as IDENTITY operator only at ±1, which expands the fidelity profile,
when NB CPs act as TARGET only at 0, and as IDENTITY at the ranges left to 1
and right to −1 (flat-bottom fidelity), which squeezes the fidelity profile. PB CPs
merge these two properties, i.e., they are expanded at the center and squeezed at
the edges. Longer sequences can enhance the property: designing broader or/and
narrower fidelity profiles.

Also it is possible to enhance the property more, using (NB2, BB2, PB2)-like CPs,
which we call ultra-sequences (ultra-BB, ultra-NB, ultra-PB). These CPs improve
with a loss in precision that now fluctuates within a certain range and is no longer
flat. Ultra-sequences are applicable in areas where ultrahigh-precision is optional
[61].

In a recent chapter, we present narrowband and passband CPs for constant ro-
tations, namely rotation gates. Constant rotations are obviously more demand-
ing than variable ones [99] and require longer sequences for the same or-
der of compensation, as they require propagator-optimization (or so-called full-
compensation). Previously, this was theoretically done using the theory of the av-
erage Hamiltonian, the Magnus expansion, or the theory of quaternions. Using
theoretical way, Wimperis found NB1 and PB1 constant rotations [3], which have
second order of optimization. We propose SU(2) random search method to numer-
ically generate constant rotations in a structured way: searching for all candidates
in accordance with the compensation order.

This chapter is organized as follows. In Sec. 4.2 we explain the derivation meth-
ods. Composite X gates are presented in Sec. 4.3, while composite Hadamard gates
in Sec. 4.4. Sec. 4.5 is devoted to the general rotation gates. The last-mentioned
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three sections are divided into two subsections, presenting narrowband and pass-
band rotations. Finally, Sec. 4.6 presents the conclusions.

4.2 derivation

We derive constant rotations similar to the previous work [48]. We are dealing
with the propagator (1.2) with SU(2) symmetry, where a and b are the complex-
valued Cayley-Klein parameters satisfying |a|2 + |b|2 = 1, where a = cos(A/2)
and b = −i sin(A/2)eiϕ. A represents the temporal pulse area A =

∫ t f
ti

Ω(t)dt
in quantum optics, the pulse width or amplitude θ in NMR, and the phase shift
φ = 2πL(n f − ns)/λ [119] in PO. Without loss of generality of the problem, we
will use the terminology of QC.

A rotation gate (1.2) can be represented by Pauli matrices

Uϕ = e−iA(σx cos ϕ−σy sin ϕ). (4.1)

CPs require chronological action of evolutions of the (4.1) type. A train of N
pulses (2.2), each with area Ak and phase ϕk (applied from left to right), produces
the propagator (2.3) (acting, as usual, from right to left).

Under the assumption of a single systematic error of pulse area ϵ (all the pulse
areas are errant Ak → Ak(1+ ϵ)), we can expand the composite propagator (2.3) in
a Taylor series versus ϵ. Because of the SU(2) symmetry of the overall propagator,
it suffices to expand only two of its elements, say U11(ϵ) and U12(ϵ). Since our
TARGET operator is the so-called θ pulse (with phase ϕ = π/2) or θ rotation gate,
i.e.

TARGET
∆
= R(θ) = eiθσy/2, (4.2)

again we set their zero-error values to the target values (see (2.4)).
Constant rotations require propagator-optimization, hence, we will optimize

both major U11(ϵ) and minor U12(ϵ) diagonal elements.

4.2.1 Narrowband composite pulses

4.2.1.1 SU(2) approach

Here, we set as many of their derivatives with respect to ϵ at ±1, in the increasing
order, as possible,

U (m)
11 (±) = 0, U (m)

12 (±) = 0, (m = 1, 2, . . . , ns), (4.3)
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where U (m)
jl = ∂m

ϵ Ujl denotes the mth derivative of Ujl with respect to ϵ. The largest
derivative order ns satisfying Eqs. (4.3) gives the order of sensitivity O(ϵns).

Derivation of the NB CPs requires the solution of Eqs. (2.4) and (4.3). We do
this numerically by using standard routines in Mathematica: we minimize the
following loss or error function of optimization

E = E0 +
ns

∑
k=1

[
|U (k)

11 (−)|2 + |U (k)
11 (+)|2 + |U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
, (4.4)

where the initial condition (targeted gate) is captured by E0 = |U11(0)− cos θ/2|2 +
|U12(0)− sin θ/2|2, and ns is the narrowness or sensitivity order. This minimization
method is similar to the least squares, since the sum of the absolute squares of the
components of error function are taken. Random search of the minimum of this
form provides fast results. For example, the well-known NB1 CP can be derived
by using SU(2) approach.

4.2.1.2 Modified-SU(2) approach

We have noticed that sometimes it is better to use the modified version of
SU(2) approach. Major and minor diagonal elements of SU(2) matrix are related
|U11(ϵ)|2 + |U21(ϵ)|2 = 1, being Cayley-Klein parameters. Due to this dependence,
optimization of one will directly narrower the other one. To ensure the stability of
the phase of constant rotation, we optimize the minor diagonal element. So, the
loss function is the following

E = E0 +
2ns

∑
k=1

[
|U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
. (4.5)

Modified SU(2) approach works for X gate or π rotations, and give better results
than by using SU(2). The number of derivatives optimized by both methods is
equal, but by this method the minor element (of the actual gate matrix) U21(ϵ) is
optimized by the order of 2ns, two times the sensitivity order. The major element
vs error U11(ϵ) dependence is already sharp-narrow and symmetric, but minor
element vs error U21(ϵ) is bell-shaped.

Unfortunately, this method does not work for Hadamard gate or π/2 rotations.
The reason is an asymmetry in both major and minor element dependences U11(ϵ)

and U21(ϵ), which can not be modified to be symmetric. One side is easier to
optimize than the other side. The optimization of U11(ϵ) at negative side ϵ = −1
is easier than at positive side ϵ = 1, and vice versa for U12(ϵ). Maybe there is
a method which can do asymmetric optimization which will give better results
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for Hadamard gate in fidelity representation, but we limit ourselves to the SU(2)
approach, since for rotation gate both sides are important.

4.2.2 Passband composite pulses

4.2.2.1 SU(2) approach

As already mentioned, PB CPs have the properties of both BB and NB CPs. In
addition to the narrowband property (4.3), we add broadband property

U (k)
11 (0) = 0, U (k)

12 (0) = 0, (k = 1, 2, . . . , nr), (4.6a)

U (m)
11 (±) = 0, U (m)

12 (±) = 0, (m = 1, 2, . . . , ns). (4.6b)

Now, in addition to sensitivity order ns in Eq. (4.6b), we also have nr which is
the largest derivative order satisfying Eq. (4.6a) and gives the order of robustness
O(ϵnr). Pulse sequence with any combination of ns and nr both greater than one is
passband. Therefore, we examine two types of passband CPs, namely

• pari passu passband CPs, for which robustness and sensitivity orders are
equal and define the passband order np = nr = ns,

• diversis passuum passband CPs, for which one of the above properties is su-
perior to the other nr ̸= ns.

Derivation of the PB CPs requires the solution of Eqs. (2.4), and (4.6). We do
this numerically by using standard routines in Mathematica: we minimize the
following loss function of optimization

E = E0 +
nr

∑
k=1

[
|U (k)

11 (0)|2 + |U (k)
12 (0)|2

]
+

+
ns

∑
k=1

[
|U (k)

11 (−)|2 + |U (k)
11 (+)|2 + |U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
.

(4.7)

For example, the well-known SK1 (np = 1) (Solovay-Kitaev method [49]) and PB1
(np = 2) (Wimperis [3]) and CPs can be derived by using SU(2) approach, which, of
course, are pari passu. But for np ≥ 3, this straightforward cancellation of required
derivatives in both major and minor elements result in the alternating or wiggled
CPs. In our opinion, the CP can’t take on such a precise optimization — due to this
inflexible method, the CP tends to be more square than possible, and these wiggles
occur. For this reason, we use more flexible method of the propagator-optimization,
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called the method of regularization. Despite this, this method is useful for obtain-
ing diversis passuum CPs (not longer ones since the wiggles occur in the same
sense).

4.2.2.2 Regularization approach

Results obtained by the SU(2) method of derivation besides SK1 and PB1, had
wiggles on the edges, arising negative fidelity. The optimization method, alternat-
ive to SU(2), is more flexible and gives better results is a regularization method

E = E0 +
2np

∑
k=1

[
|F (k)

T (0)|2 + |F (k)
T (−)|2 + |F (k)

T (+)|2
]
+

+ λ
[
|U ′

11(0)|2 + |U ′
12(0)|2 + |U ′

11(+)|2+

+ |U ′
11(−)|2 + |U ′

12(+) + |U ′
12(−)|2

]
,

(4.8)

where 2np orders of narrowness/broadness of trace fidelity of SU(2) matrix are
optimized, which is equivalent to the optimization of SU(2) matrix elements by
the order of np (two times lower). A regularizer λ ̸= 0 constrains the result to be
constant rotation and without unnecessary wiggles. In our optimization, it is taken
λ = 1. As you may notice, we constrain ourselves to deriving the pari passu CPs
using the regularization method, although it can also be used to derive the diversis
passuum CPs. The aim of our work is to show the diversity of the CPs and how to
derive them.

4.2.3 Performance measures

As in our previous work [48], here we also use the Frobenius distance fidelity
(2.7), as the measure of performance of rotation gates. Alternatively, since this is a
common practice in the NMR QC community, the trace fidelity can be used (2.8).

Since we consider constant rotations, the fidelities can not be negative, while
it can be the case for CPs alternating at the bottom, i.e. like NB2 and PB2. This
problem of negative fidelities could be solved by taking absolute value as was done
for the trace fidelity, but we suggest not to take since it has meaning which can
be neglected in the opposite case. Negative fidelity means that actual and target
matrices are so far from each other, that the infidelity or the norm ∥U (ϵ)−R(θ)∥ =√

1
4 ∑2

j,k=1|Ujk − Rjk|2, the square root of the sum of the squares of absolute values
of closeness of matrix elements, is greater than 1. In the worst case, when actual
and target matrices have opposite signs, the possible minimum values of fidelities
are −1 and 1 −

√
2 for trace and distance fidelities, respectively. Opposite sign
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represents inessential global phase for quantum gates, and taking absolute value
of the fidelity is associated with this consideration. Anyway, this is not our case,
since we do not have alternations or wiggles of the fidelity and the minimum of
fidelity is at it’s boundaries ϵ = ±1. As we notice, maximum or top fidelity is equal
100% and represents pure correspondence of actual and target gates [F (θ)]max =

[F (θ)]ϵ=0 = 1. Despite this, the minimum or bottom fidelity depends on the θ

parameter

[FT(θ)]min = [FT(θ)]ϵ=±1 = cos
θ

2
, (4.9a)

[F (θ)]min = [F (θ)]ϵ=±1 = 1 −
√

1 − cos
θ

2
. (4.9b)

For the X gate both fidelity measures are zero at the bottom [F (π)]min =

[FT(π)]min = 0, when for the Hadamard gate [F (π/2)]min = 1 −
√

1 − 1√
2
,

[FT(π/2)]min = 1√
2

they are greater than zero and differ from each other. Mov-
ing from π + πk rotations to the π/2 + πk (∀k ∈ Z), the bottom fidelity increases.
Hence, the performances of different rotation gates can not be compared perfectly.
This is a drawback of the fidelity measures. Especially, for sensitivity (narrowness
of fidelity) measures, the presence of a bottom fidelity can not be neglected. We
calculate full width at half-maximum (FWHM) for narrowband composite rotation
gates at FHM =

[F ]max+[F (θ)]min
2 =

1+[F (θ)]min
2 , where [F (θ)]min is a bottom fidelity.

Likewise, UL-fidelity (ultralow) is computed by adding the value of 10−4 to the
bottom fidelity [F (θ)]min, when UH-fidelity (ultrahigh) were computed by substi-
tuting this value from the top fidelity 1.

We propose to use the measure ∆(α0) = |ϵ (F = α0)| − |ϵ (F = 1 − α0)| of the
rectangularity of passband CPs. In our case for rotation gates, we choose α0 equal
to 10−4, which corresponds to the quantum computation benchmark, and rectan-
gularity measure ∆ ∆

= ∆(10−4) is the difference between absolute errors at UL-
(ultralow) and UH-fidelities (ultrahigh). Since the slope coefficient (is approxim-
ated by a straight line tan β0 ≃ ∆F

∆(α0)
= 1−2α0

∆(α0)
) is inversely proportional to ∆, hence,

smaller ∆, higher the rectangularity of the fidelity line.

4.3 x gate

4.3.1 Narrowband

Derivation of the narrowband (hence passband) CPs, contrary to broadband ones,
reveals that they must have asymmetric design of phases, which puts up a barrier
for derivation of longer sequences due to heavy numerical calculations. As it was
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mentioned narrowband pulses are prone to superfluous wiggles when derived
by SU(2) method. Nevertheless, we derive composite X gates by this method. To
accomplish that, we set two appropriate designs of CPs — antisymmetric AN and
Wimperis-kind WN, both are the sequences of π pulses.

If we target pure π composite rotations (ϕ = 0), AN has the following structure
or design

πϕ1πϕ2 · · ·πϕns πϕns+1π−ϕns · · ·π−ϕ2π−ϕ1 , (4.10)

and consists of the odd number of π pulses, which besides the middle one, have
phases with equal absolute value but with opposite signs when tracking from the
left to right and from the right to left. Since we target X gate (ϕ = π/2), π/2 is
added to all phases with both minus and plus signs ±ϕk → ±ϕk + π/2.

Again, for π composite rotations (ϕ = 0), WN design looks more interpretable

πϕ1πϕ2πϕ3 · · ·πϕns+1πϕns+1 · · ·πϕ3πϕ2 , (4.11)

and consists of the odd number of π pulses, where, besides the first pulse, the
second half of the structure is a mirror image of the first half, i.e. in the second
half, phases are written in the opposite direction. Again, since we target X gate
(ϕ = π/2), π/2 is added to all phases ϕk → ϕk + π/2.

Interestingly, one gets wiggles in the case of AN with 5, 9, 13 pulses, but the gap
was filled with WN, which are useful for 5, 9, 13, ... . Lowest member of WN is the
well-known NB1 pulse of Wimperis (W5), hence the name of the design. AN and
WN CPs for X gate derived by SU(2) approach are listed in Table 4.1. We choose
FWHM as the performance measure of sensitivity (narrowness) of narrowband
composite X gates.

Curiously, for X gate or π rotation, the modified-SU(2) approach improves the
results obtained by the SU(2) method. We derived up to 13 CPs by this method,
called AN-m, which have the same antisymmetric design of AN. For example, A3
is derived by both methods. Table 4.2 shows that the AN-m CPs for X gate derived
by the modified version of SU(2) outperform the same members N obtained by
conventional one. This shows the privilege of antisymmetric pulses over Wimperis-
kind ones.

4.3.2 Passband

4.3.2.1 Pari passu

Difficulty of derivation of the passband rotation gates is manifested in the appear-
ance of alternation in fidelity (deriving by SU(2)), not established by the derivation
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method, exhibiting their tenderness. This problem can be solved by using a regu-
larization method, instead of the strict SU(2) method. Despite that it was possible
to derive SK1 and PB1 as the first and second order pari passu passband pulses,
respectively (wiggles arise for longer sequences). In both methods, the design of
pari passu passband pulses is the same

πϕ1(2π)ϕ2(2π)ϕ3 · · · (2π)ϕN , (4.12)

the sequence of nominal 2π pulses, preceded (or succeeded) by a pulse of area π,
and the number of pulses N is odd. Sequences obtained by regularization method
PN for X gate are listed in Table 4.4. The first member P3 is SK1 (np = 1), and the
second member P5 outperforms PB1 (both np = 2) by means of error sensitivity
range and rectangularity. Increasing the number of pulses, performance measures,
namely, sensitivity, robustness and rectangularity, improve regularly. This is not
the case for SU(2) method, when using ultrahigh-precision measures — the UL-
fidelity range of PB1 remains equal to the same of SK1.

Intersection of fidelities of P3 and P5 is at ϵ35 = 0.454371 and F (ϵ35) = 0.461157,
accordingly for P5 and P7: ϵ57 = 0.471023 and F (ϵ57) = 0.423852, and for P7
and P9: ϵ79 = 0.478761 and F (ϵ79) = 0.403605. It seems that intersection ϵN−2,N

converges to ϵp = 0.5 when N ≫ 1, and one may get square fidelity for suf-
ficiently large N ≥ Np. To obtain Np seems to be done by supercomputer (or
maybe quantum computer), neural networks, or their combination, depending on
the complexity of the optimization algorithm.

In our opinion, the value ϵp = 0.5 is suggested by the method we use, since the
fidelity both at the bottom and at the top is optimized with equal force and with
equal step (pari passu).

4.3.2.2 Diversis passuum

Heterogeneous optimization of broadband and narrowband properties generates
another type of passband pulses, called diversis passuum, which can be derived
using SU(2) method, denoted as DN

πϕ1πϕ2 · · ·πϕN , (4.13)

which don’t have special design in general, although for the lowest members D7a
and D7b phases have a simple structure (see Table 4.6).
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Figure 4.1: Frobenius distance fidelity (top) and infidelity (bottom) of composite narrow-
band Hadamard gates produced by the four families of composite sequences
from the Table 4.3.

4.4 hadamard gate

4.4.1 Narrowband

In the case of non-π rotations, both major and minor element dependences U11(ϵ)

and U21(ϵ) are asymmetric and can not be modified to be symmetric. Considering
also the fact that the useful CPs are asymmetric for narrowband rotations, the hard
numerical calculations are necessary for obtaining the results.

For optimization of non-π rotations, the SU(2) method is used. Four designs
or structures can be used to derive narrowband Hadamard gate — antisymmetric
1st type and 2nd type, Wimperis-kind and asymmetric, general structure of which
liberally presented in Sec. 4.5.1. Corresponding members of these four families are
displayed in Table 4.3 and Fig. 4.1.

Two facts must be acknowledged for rotations other than π:
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• The error sensitivity range of the resulting narrowband CPs depends on the
design (the structure of the pulse areas) used rather than the order of op-
timization. For a particular structure, increasing the optimization order for
longer pulses makes the pulses narrower, but different structures differ in
error sensitivity ranges for the same optimization order. The reason is that
different structures already optimize the overall gate error at different levels.
For example, the structure AN without optimization already nullifies the
odd derivatives 1, 3, 5, 7, . . . of U11(ϵ) at ϵ = −1 and the even derivatives
2, 4, 6, 8, . . . of U21(ϵ) at ϵ = −1.

• The case of X gate is special: the number of pulses of AN is lower by two —
A5 of Hadamard gate (and non-π general rotation gate) is equivalent to A3
of X gate, A7 to A5, and so forth.

4.4.2 Passband

Pari passu passband PN CPs for Hadamard gate have the structure presented in
Sec. 4.5.2 and are displayed in Table 4.5.

Intersection of fidelities of P3 and P5 is at ϵ35 = 0.44608 and F (ϵ35) = 0.726128,
accordingly for P5 and P7: ϵ57 = 0.465489 and F (ϵ57) = 0.702619, and for P7 and
P9: ϵ79 = 0.474985 and F (ϵ79) = 0.689117. As for X gate, here also we see tendency
ϵN−2,N → ϵp when N ≫ 1.

Diversis passuum passband DN CPs for Hadamard gate have the structure
presented in Sec. 4.5.2 and are displayed in Table 4.7.

4.5 general rotation gate

General rotation gates, narrowband and passband, being non-π rotations, can be
obtained in the same fashion as Hadamard gate (θ = π/2).

4.5.1 Narrowband

Generalization of AN CPs, i.e. antisymmetric sequencese of 1st type, have the
following structure in general presented by θ parameter(

π − θ

2

)
ϕ0

πϕ1 · · ·πϕns πϕns+1π−ϕns · · ·π−ϕ1

(
π − θ

2

)
−ϕ0

. (4.14)
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When targeting general rotation gates (ϕ = π/2), as usual, this π/2 phase change
must be done for all the components in the structure. For non-π rotations the
number of pulses is N = 2ns + 3, where ns is the sensitivity order. In the case of
π rotations (θ = π) we transition to the Eq. (4.10), where one gets rid of the first
and the last pulses (being zero rotations), hence ϕ0, and the number of constituent
pulses becomes N = 2ns + 1. General formula for the number of pulses and total
operation time can be presented using a step function σ,

N(θ) = 2ns + 1 + 2σ(θ), (4.15a)

Atot(θ) = N(θ)π − 2θ, (4.15b)

σ(θ) =

1 if θ ∈ (0, π),

0 if θ = π.
(4.15c)

In the case of the 1st type, we pre-set the structure (4.14) and optimization is
done afterwards. As was mentioned, the performance of the resulting narrowband
CPs depends on the used design rather than the order of optimization. Already,
choosing the design one may get many derivatives zero beforehand. This is a case
for the 1st type. Although some lose on speed of operation, AN is much robust and
has systematic design compared to the rest, providing systematic pattern in per-
formance measures. For the same ns it gives the best performance. For π rotations
AN-m are the best ones having the same AN design.

Alternatively, one may use 2nd type of antisymmetric design ATN

αϕ1πϕ2 · · ·πϕns+1π−ϕns+1 · · ·π−ϕ2α−ϕ1 , (4.16)

where the all phase structure is added by π/2 to obtain a general rotation gate.
When θ = π, α is equal to π/2 and one gets the alternative to (4.10) structure which
have the same performance (in Atot and sensitivity). Results of 2nd type with
number N + 1 derived by SU(2) method will not differ in either speed or sensitivity
from the 1st type with number N in Table 4.1. So separation of antisymmetric
sequences to two types becomes important in the case of non-π rotation gates.

Two asymmetric sequences are also useful for general rotation gates, Wimperis-
kind and just asymmetric. Wimperis-kind WN design, written for ϕ = 0, is

θϕ1πϕ2 · · ·πϕ2ns+1 , (4.17)

phases of which have simpler structure in the case of N = 5, 9, 13, . . .:

θϕ1πϕ2 · · ·πϕns+1πϕns+1πϕns · · ·πϕ2 . (4.18)
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Unfortunately, WN didn’t have 1st order member. The lowest member is the 2nd
order pulse known as NB1 with the simplified structure (again for ϕ = 0)

θ0πχπ−χπ−χπ−χ, (4.19)

where χ = arccos
(
− θ

4π

)
. To obtain rotation gates from these sequences, one

must add π/2 to the phase structures in (4.17), (4.18) and (4.19). For X gate
χ ≈ 0.580431π and for Hadamard χ ≈ 0.539893π.

Since the sequence of π pulses in the CP carry the optimization process and
seeds a stable design, the most fictitious asymmetric pulse may have the following
design

αϕ1πϕ2πϕ3 · · ·πϕ2ns−1πϕ2ns
βϕ2ns+1 , (4.20)

denoted as ASN. Sometimes, it is possible to find the best trade-off in speed and
accuracy by these sequences. Good example is AS9 in Table 4.3.

Both Wimperis-kind and asymmetric designs converge to the sequence of π

pulses in the case of π rotations (X gate), and in that case the most neat structure
is antisymmetric, i.e. AN.

4.5.2 Passband

Pari passu passband rotation gates PN are subjected to the following design (ϕ =

π/2 must be added to all the phases)

θϕ1(2π)ϕ2(2π)ϕ3 · · · (2π)ϕ2np+1 , (4.21)

which can be considered as the generalization of the SK1:

θ0(2π)χ(2π)−χ, (4.22)

where χ = arccos
(
− θ

4π

)
, and the PB1:

θ0(2π)χ(2π)−χ(2π)−χ(2π)χ, (4.23)

where χ = arccos
(
− θ

8π

)
.

Both SK1 and PB1 can be derived using SU(2) method, but, unfortunately, this
optimization is strict to use for longer sequences. Longer ones can be obtained
using another propagator-optimization method, where the fidelity is optimized
instead of matrix elements. It also ensures constant rotations due to regularizer
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used, hence, we call it a regularization method. Both methods can be used to
derive any θ rotation gate.

Diversis passuum passband rotation gates DN have the design similar to (4.17)

θϕ1πϕ2 · · ·πϕ2(nr+ns)+1 , (4.24)

but here the number of pulses is equal to N = 2(nr + ns) + 1. It was possible to
find the simpler structure of phases for the lowest members: more sensitive D7a
with (ns, nr) = (2, 1) and more robust D7b with (ns, nr) = (1, 2)

θϕ1πϕ2πϕ3πϕ4π−ϕ3π−ϕ4πϕ2−π. (4.25)

Although we use only SU(2) method to derive DN-s, the regularization method
can be applied as an alternative.

4.6 conclusions

We presented CPs which produce narrowband and passband rotational single-
qubit gates, namely — X, Hadamard and general rotation gates. Narrowband and
passband CPs tend to alternate (wiggle) in fidelity, which is an unintended result
of derivation method. Furthermore, having the same order of optimization, these
CPs differ in performance depending on the structure of the pulse area (design)
and the method of derivation used.

Three types of optimization methods were used — SU(2), modified-SU(2), and
regularization. Narrowband X gates derived by the modified-SU(2) approach are
superior to corresponding gates obtained using the SU(2) approach by means of
sensitivity, for the same sensitivity order. For example, the antisymmetric A5-m
pulse outperforms well-known NB1 — FWHM of A5-m is about 42.8%, which is
narrower than FWHM of NB1 49.4% of whole error bandwidth. Since we have not
found an alternative to the SU(2) method for narrowband Hadamard or general
rotation gates, we apply this old method to two antisymmetric and two asymmetric
pulse designs.

We propose two types of passband CPs — pari passu PN, with passband order,
and diversis passuum DN, with different sensitivity and robustness orders. PN se-
quences are derived by the regularization method, and show systematic improve-
ment in all the performance characteristics — sensitivity, robustness and rectan-
gularity. DN sequences are derived by the SU(2) method, although regularization
method can also be used.
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Figure 4.2: Frobenius distance fidelity (top) and infidelity (bottom) of composite narrow-
band X gates produced by the antisymmetric composite sequences ANs (3,7,11
pulses) and WNs (5,9,13 pulses) from the Table 4.1.

The results in this chapter can be useful in applications such as spatial localiza-
tion in in vivo NMR spectroscopy, selective and local spatial addressing of trapped
ions or atoms in optical lattices by tightly focused laser beams in QS, narrowband
polarization filters and passband polarization retarders in PO.
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Figure 4.3: Frobenius distance fidelity (top) and infidelity (bottom) of composite X gates
produced by the antisymmetric composite sequences AN-m designed by the
regularization method from the Table 4.2.
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Figure 4.4: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband
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4.6 conclusions 73

-1.0 -0.5 0.0 0.5 1.0

0.5

0.6

0.7

0.8

0.9

1.0

Pulse Area Error ϵ

F
id
el
it
y

single pulse

SK1

PB1

P5

P7

P9

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.00

0.05

0.10

0.15

0.20

0.25

Pulse Area Error ϵ

F
id
el
it
y

single pulse

SK1

PB1

P5

P7

P9

Figure 4.6: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband
Hadamard gates produced by PN (pari passu) sequences from the Table 4.5.
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Table 4.1: Phases of antisymmetric composite sequences of N = 2ns + 1 nominal π pulses, which produce the π rotation with a pulse area
error sensitivity up to order O(ϵns). The last column gives the half-fidelity range or, so called, FWHM (full width at half maximum)
[π(1 − ϵ0), π(1 + ϵ0)] of pulse area error sensitivity wherein the Frobenius distance fidelity is above the value 0.5, i.e. the infidelity is
below HM= MAX+MIN

2 = 1+0
2 = 0.5.

Name Pulses O(ϵns) Phases (in units π) FWHM (error sensitivity range)

Antisymmetric sequences

{ϕ1, ϕ2, . . . , ϕns , ϕns+1,−ϕns , . . . ,−ϕ2,−ϕ1}+ 1/2

single 1 O(ϵ0) 0 [0.53989π, 1.46011π]

A3 3 O(ϵ) 1
3 , 1 [0.726π, 1.274π]

A7 7 O(ϵ3) 0.244, 1.6719, 0.7626, 1 [0.802π, 1.198π]

A11 11 O(ϵ5) 0.3468, 1.0836, 0.6708, 0.8186, 0.2655, 1 [0.823π, 1.177π]

Wimperis-kind sequences

{ϕ1, ϕ2, . . . , ϕns−1, ϕns+1, ϕns+1, ϕns−1, . . . , ϕ2}+ 1/2

W5 ∆
= NB1 5 O(ϵ2) 0, 0.5804, 1.4196 [0.753π, 1.247π]

W9 9 O(ϵ4) 0, 0.4417, 1.8105, 0.8737, 1.3 [0.813π, 0.187π]

W13 13 O(ϵ6) 0, 1.2863, 0.7778, 1.4773, 0.3446, 0.5632, 1.7414 [0.861π, 1.139π]



Table 4.2: Phases of antisymmetric composite sequences of N = 2ns + 1 nominal π pulses, which produce the π rotation with a pulse area
error sensitivity up to order O(ϵns). The last column gives the half-fidelity range or, so called, FWHM (full width at half maximum)
[π(1 − ϵ0), π(1 + ϵ0)] of pulse area error sensitivity wherein the Frobenius distance fidelity is above the value 0.5, i.e. the infidelity is
below HM= MAX+MIN

2 = 1+0
2 = 0.5.

Name Pulses O(ϵns) Phases (in units π) FWHM (error sensitivity range)

Antisymmetric sequences

{ϕ1, ϕ2, . . . , ϕns , ϕns+1,−ϕns , . . . ,−ϕ2,−ϕ1}+ 1/2

single 1 O(ϵ0) 0 [0.53989π, 1.46011π]

A3 3 O(ϵ) 1
3 , 1 [0.726π, 1.274π]

A5-m 5 O(ϵ2) 4
5 , 8

5 , 0 [0.786π, 1.214π]

6
5 , 2

5 , 0

A7-m 7 O(ϵ3) 5
7 , 13

7 , 11
7 , 1 [0.819π, 1.181π]

9
7 , 1

7 , 3
7 , 1

A9-m 9 O(ϵ4) 2
9 , 12

9 , 10
9 , 4

9 , 0 [0.840π, 1.160π]

14
9 , 12

9 , 16
9 , 10

9 , 0

A11-m 11 O(ϵ5) 7
11 , 1

11 , 13
11 , 17

11 , 19
11 , 1 [0.855π, 1.145π]

9
11 , 17

11 , 1
11 , 3

11 , 15
11 , 1

A13-m 13 O(ϵ6) 20
13 , 18

13 , 22
13 , 16

13 , 24
13 , 14

13 , 0 [0.867π, 1.133π]



Table 4.3: Phases of AN: antisymmetric composite sequences of N − 2 nominal π pulses, sandwiched by two pulses of areas π/4, and WN:
asymmetric Wimperis-kind composite sequences of N − 1 nominal π pulses, preceded (or succeeded) by a pulse of area θ = π/2;
which produce the θ = π/2 rotation with a pulse area error sensitivity up to order O(ϵns). The last column gives FWHM (full width
at half maximum) [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error sensitivity wherein the Frobenius distance fidelity is above the value
1+(1−

√
1−1/

√
2)

2 , i.e. the infidelity is below HM= MAX+MIN
2 = 1+(1−

√
1−1/

√
2)

2 ≈ 0.7294, where the minimum (at ϵ = ±1) Frobenius
distance fidelity for π/2 rotations is MIN = 1 −

√
1 − 1/

√
2 ≈ 0.4588.

Name Pulses O(ϵns) Phases (in units π) Atot FWHM

(error sensitivity range)

Antisymmetric sequences (1st type)

{ϕ0, ϕ1, ϕ2, . . . , ϕns , ϕns+1,−ϕns , . . . ,−ϕ2,−ϕ1,−ϕ0}+ 1/2

single 1 O(ϵ0) 0 π/2 [0.50973π, 1.49027π]

A5 5 O(ϵ) 1, 0.2301, 1 3.5π [0.725π, 1.275π]

A7 7 O(ϵ2) 1, 0.2954, 0.8230, 0 5.5π [0.7987π, 1.2013π]

A9 9 O(ϵ3) 1, 0.3082, 0.7709, 0.1152, 1 7.5π [0.8123π, 1.1877π]

A11 11 O(ϵ4) 1, 1.9962, 0.8077, 1.4886, 0.6279, 0 9.5π [0.8006π, 1.1994π]

A13 13 O(ϵ5) 1, 0.2291, 1.9036, 1.5659, 0.5577, 0.9389, 1 11.5π [0.8306π, 1.1694π]

Asymmetric sequences (Wimperis-kind)

{ϕ1, ϕ2, . . . , ϕ2ns+1}+ 1/2

W5 ∆
= NB1 5 O(ϵ2) 0, 0.539893,−0.539893,−0.539893, 0.539893 4.5π [0.7396π, 0.2604π]

W7 7 O(ϵ3) 0, 0.958038, 1.70099, 1.13518, 1.91065, 0.793721, 0.27538 6.5π [0.7897π, 1.2103π]
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W9 9 O(ϵ4) 0, 1.26578, 0.415523, 0.152784, 1.2404, 1.2404, 0.152784, 8.5π [0.8105π, 1.1895π]

0.415523, 1.26578

W13 13 O(ϵ6) 0, 1.88926, 0.801439, 1.32824, 0.606488, 1.39505, 0.211373, 0.211373 12.5π [0.8332π, 1.1668π]

1.39505, 0.606488, 1.32824, 0.801439, 1.88926

Asymmetric sequences

αϕ1πϕ2 · · ·πϕN−1 βϕN

α, β; ϕ1, ϕ2, . . . , ϕN

AS3 3 O(ϵ) 0.486, 1.2463; 0.2540, 1.8598, 0.9799 2.7323π [0.7204π, 1.2796π]

AS5 5 O(ϵ2) 0.6298, 0.8426; 0.4083, 1.6092, 0.7888, 1.4389, 0.3147 4.4723π [0.7407π, 1.2593π]

AS5a 5 O(ϵ2) 0.778276, 0.69444; 1.8521, 0.997442, 0.280465, 1.05988, 1.88585 4.4727π [0.741π, 0.259π]

AS7 7 O(ϵ3) 0.38093, 1.2554; 1.7684, 1.9270, 0.8589, 1.3447, 0.6742, 1.4987, 0.3302 6.6363π [0.797π, 1.203π]

AS7a 7 O(ϵ3) 0.320885, 1.31241; 0.27189, 0.17642, 1.26598, 0.642382, 6.6333π [0.797π, 1.203π]

1.33723, 0.600511, 1.72175

AS9 9 O(ϵ4) 0.33322, 0.21161; 1.13696, 1.70097, 1.57736, 0.33491, 1.46716, 7.5448π [0.8314π, 1.1686π]

0.61094, 0.87834, 0.32587, 1.19906

Antisymmetric sequences (2nd type)

α; {ϕ1, ϕ2, . . . , ϕns+1,−ϕns+1, . . . ,−ϕ2,−ϕ1}+ 1/2

AT4 4 O(ϵ) 0.344509; 0.32165, 0.55861 2.689π [0.7202π, 1.2798π]
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AT61 6 O(ϵ2) 0.415106; 0.411914, 0.561681, 0.474778 4.83π [0.8243π, 1.1757π]

AT8 8 O(ϵ3) 0.317054; 0.275735, 0.230584, 1.33439, 0.651125 6.634π [0.7971π, 1.2029π]

AT10 10 O(ϵ4) 0.255798; 0.0853904, 1.66734, 0.759385, 1.0321, 1.92737 8.512π [0.8004π, 1.1996π]

AT12 12 O(ϵ5) 0.307743; 0.2576, 0.157112, 1.53557, 0.46763, 1.25254, 0.70666 10.615π [0.8335π, 1.1665π]

AT142 14 O(ϵ6) 0.370181; 0.357786, 0.457094, 0.992936, 1.887852, 12.74π [0.8668π, 1.1332π]

1.39542, 0.54164, 0.4294

AT16 16 O(ϵ7) 0.320743; 1.7175, 0.17708, 1.09267, 1.11819, 14.641π [0.8622π, 1.1378π]

0.345712, 1.70626, 0.28594, 1.17393

1 AT6 is not flat bottom.
2 AT14 is not perfectly flat bottom.



Table 4.4: Phases of pari passu passband pulses for X gate. PB1-like pulse structure is used (2π pulses with single π).

Name Pulses np Phases (in units π) UL-fidelity UH-fidelity ∆

{ϕ1, ϕ2, . . . , ϕN}+ 1/2 (error sensitivity range) (error robustness range) (rectangularity)

single 1 0 0 [0.00013π, 1.99987π] [0.99991π, 1.00009π] 0.99978π

P3 ∆
= SK1 3 1 0, 0.58043, 1.41957 [0.027π, 1.973π] [0.995π, 1.005π] 0.967π

P5 5 2 0, 1.78506, 0.48331, 1.34363, 0.83030 [0.077π, 1.923π] [0.978π, 1.022π] 0.901π

P7 7 3 0, 1.07359, 0.772099, 1.32971, 0.436728, [0.120π, 1.880π] [0.957π, 1.043π] 0.837π

1.69584, 0.0868198

P9 9 4 0, 1.97287, 0.139635, 1.67993, 0.430437, [0.154π, 1.846π] [0.936π, 1.064π] 0.782π

1.33878, 0.762866, 1.11383, 0.97606

PB1 5 2 0, 0.539893, 1.46011, 1.46011, 0.539893 [0.027π, 1.973π] [0.976π, 1.024π] 0.949π



Table 4.5: Phases of pari passu passband pulses for Hadamard gate. PB1-like pulse structure is used (2π pulses with single π/2).

Name Pulses np Phases (in units π) UL-fidelity UH-fidelity ∆

{ϕ1, ϕ2, . . . , ϕN}+ 1/2 (error sensitivity range) (error robustness range) (rectangularity)

single 1 0 0 [0.00019π, 1.99981π] [0.99982π, 1.00018π] 0.99963π

P3 ∆
= SK1 3 1 0, 0.539893, 1.46011 [0.031π, 1.969π] [0.992π, 1.008π] 0.961π

P5 5 2 0, 0.816729, 1.37808, 0.447255, 1.79388 [0.084π, 1.916π] [0.973π, 1.027π] 0.889π

P7 7 3 0, 1.07705, 0.752636, 1.35704, 0.410338, [0.128π, 1.872π] [0.949π, 1.051π] 0.821π

1.71464, 0.0836752

P9 9 4 0, 0.85519, 0.665578, 1.75921, 1.44318, [0.145π, 1.855π] [0.947π, 1.053π] 0.803π

0.526885, 0.761473, 1.67661, 1.84619

PB1 5 2 0, 0.519907, 1.48009, 1.48009, 0.519907 [0.031π, 1.969π] [0.970π, 1.030π] 0.939π



Table 4.6: Phases of diversis passuum passband pulses for X gate.

Name Pulses ns, nr Phases (in units π) UL-fidelity UH-fidelity ∆

{ϕ1, ϕ2, . . . , ϕN}+ 1/2 (error sensitivity range) (error robustness range) (rectangularity)

ϕ1, ϕ2, ϕ3, ϕ4,−ϕ3,−ϕ4, ϕ2 − 1

D7a 7 2, 1 0, 1.24005, 0.851488, 0.371396 [0.043π, 1.957π] [0.995π, 1.005π] 0.952π

7 2, 1 0, 1.75995, 0.371396, 0.851488

D7b 7 1, 2 0, 1.24005, 1.6286, 1.14851 [0.023π, 1.977π] [0.974π, 1.026π] 0.951π

7 1, 2 0, 0.759954, 0.371396, 0.851488

D9a 9 3, 1 0, 1.1196, 0.735454, 0.733506, 1.38161, [0.109π, 1.891π] [0.998π, 1.002π] 0.889π

0.680734, 1.93256, 1.56754, 0.0517938

D9b 9 1, 3 0, 1.1196, 1.50375, 1.50181, 0.853711, [0.020π, 1.980π] [0.967π, 1.033π] 0.947π

0.152812, 0.900982, 0.535975, 0.0517144

D11d3 11 2, 3 0, 0.6661, 1.1385, 1.0056, 1.8812, 1.5879, [0.028π, 1.972π] [0.936π, 1.064π] 0.908π

0.9755, 0.6004, 0.2092, 1.4173, 0.0729

3 Possible R11a, R11b and R11c, respectively, for (ns, nr) = (4, 1), (1, 4) and (3, 2), derived with our method, are alternating pulses with wiggles, not relevant to
rotation gates.



Table 4.7: Phases of diversis passuum passband pulses for Hadamard gate.

Name Pulses ns, nr Phases (in units π) UL-fidelity UH-fidelity ∆

{ϕ1, ϕ2, . . . , ϕN}+ 1/2 (error sensitivity range) (error robustness range) (rectangularity)

ϕ1, ϕ2, ϕ3, ϕ4,−ϕ3,−ϕ4, ϕ2 − 1

D7a 7 2, 1 0, 1.24751, 0.803639, 0.308613 [0.0491π, 1.9509π] [0.9936π, 1.0064π] 0.9445π

7 2, 1 0, 0.752487, 1.19636, 1.69139

D7b 7 1, 2 0.247513, 0.803639, 0.308613 [0.0260π, 1.9740π] [0.9674π, 1.0326π] 0.9414π

7 1, 2 0, 0.752487, 0.308613, 0.803639

D9a 9 3, 1 0, 1.1113, 0.6905, 0.7503, 1.4422, 0.5945, [0.1205π, 1.8795π] [0.9901π, 1.0099π] 0.8696π

1.8509, 1.6036, 0.0760

D9b 9 1, 3 0, 0.8886, 0.4679, 0.4081, 1.1000, 1.9477, [0.0227π, 1.9773π] [0.9342π, 1.0658π] 0.9116π

1.2041, 1.4515, 1.9238

D11d4 11 2, 3 0, 1.9174, 0.9827, 1.2348, 0.7041, 0.1794, [0.0307π, 1.9693π] [0.9329π, 1.0671π] 0.9021π

0.6527, 1.5332, 1.0226, 1.6844, 0.1870

4 Possible R11a, R11b and R11c, respectively, for (ns, nr) = (4, 1), (1, 4) and (3, 2), derived with our method, are alternating pulses with wiggles, not relevant to
rotation gates.
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D E T E R M I N I S T I C G E N E R AT I O N O F

A R B I T R A RY U LT R A S M A L L E X C I TAT I O N

O F Q U A N T U M S Y S T E M S B Y C O M P O S I T E

P U L S E S E Q U E N C E S

In some applications of quantum control, it is necessary to produce very weak
excitation of a quantum system. Such an example is presented by the concept of
single-photon generation in cold atomic ensembles or doped solids, e.g. by the
DLCZ protocol, for which a single excitation is shared among thousands and mil-
lions atoms or ions. Another example is the possibility to create huge Dicke state
of N qubits sharing a single or a few excitations. Other examples are using tiny
rotations to tune high-fidelity quantum gates or using these tiny rotations for test-
ing high-fidelity quantum process tomography protocols. Ultrasmall excitation of
a quantum transition can be generated by either a very weak or far-detuned driv-
ing field. However, these two approaches are sensitive to variations in the exper-
imental parameters, e.g. the transition probability varies with the square of the
pulse area. Here we propose a different method for generating a well-defined pre-
selected very small transition probability — of the order of 10−2 to 10−8 — by using
composite pulse sequences. The method features high fidelity and robustness to
variations in the pulse area and the pulse duration.

5.1 introduction

In almost all applications of quantum control, the focus is either on complete pop-
ulation inversion (known as X gate in quantum information) or half excitation
(known as Hadamard or

√
X gate in quantum information). These are produced

most often by resonant excitation by π and π/2 pulses, but adiabatic and compos-
ite methods have also been used. These methods have different advantages and
shortcomings. For instance, resonant excitation is the fastest method and is very
accurate if the parameter values are very precise [133, 134], but it is sensitive to
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parameter variations. Adiabatic methods [65, 75] are robust to experimental er-
rors but are slow and it is difficult to reach high accuracy with them. (A cure is
offered by the “shortcuts-to-adiabaticity” approach [135], but it comes with the ne-
cessity of accurate pulse shaping or additional fields.) Composite pulses — trains
of pulses with well-defined relative phases used as control parameters [44, 45] —
sit somewhere in the “sweet spot” as they feature extreme accuracy and robustness,
while being significantly faster than adiabatic methods (but slower than resonant
excitation by a factor of 2-3 or more).

However, quantum control offers the opportunity for partial excitation with any
transition probability, rather than just 1 and 1

2 . For instance, there are applications
in which a very small transition probability is required. One prominent example is
the DLCZ protocol for single-photon generation in an ensemble of ultracold atoms
or in a doped solid and its variations and extensions [136–142]. Single photons
are the physical platform for such advanced technologies as quantum communic-
ations [143–147] and photonic quantum computing [148–151]. In this protocol, a
three-level Raman system |g1⟩ ↔ |e⟩ ↔ |g2⟩ is used. In the writing process, the
atomic transition |g1⟩ ↔ |e⟩ is excited with a very low probability by an off-
resonant laser pulse with a wave vector

−→
kw, such that a single (or a few) atomic

excitation is stored in the ensemble as a shared excitation by all atoms. Then col-
lective spontaneous emission on the transition |e⟩ → |g2⟩ occurs at a random
time, in which a (Stokes) photon is emitted in a random direction. However, a
single-photon detector is placed along a particular spatial direction and any click
in it is considered as a “heralded” photon, with a well-defined wave vector

−→
ks .

In the reading process, a resonant laser pulse with a wave vector
−→
kr is applied on

the atomic transition |g2⟩ ↔ |e⟩, which stimulates the emission of a (anti-Stokes)
photon on the pump transition |e⟩ → |g1⟩, in a well-defined spatial direction

−→
ka ,

determined by the phase-matching condition
−→
ka =

−→
ks +

−→
kw −

−→
kr . In this protocol,

one of the crucial conditions is to be able to produce only one shared excitation
among a large number of atoms N, i.e. a driving field which generates a transition
probability of 1/N is needed.

Another example is the possibility to create huge entangled Dicke states [152].
These very special states share a fixed number of excitations n evenly among N
qubits, a special case of which (for n = 1) is the W state. A prominent feature of the
Dicke states is that they are immune against collective dephasing, which is ubiquit-
ous in various systems. Therefore, the Dicke sub-space, which is N!/n!(N − n)!-
dimensional, can be used as a decoherence-free computational subspace [153–
155]. Dicke states possess genuine multi-partite entanglement [156, 157], which
is, moreover, very robust against particle loss [158–160]: the loss of a qubit reduces
the N-dimensional Dicke state to a N − 1-dimensional one. Dicke states have been
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proposed and demonstrated in various physical systems, including ensembles of
neutral atoms [161, 162], trapped ions [163–166], quantum dots [167], and using
linear optics [162, 168]. Many of these proposals and demonstrations have various
restrictions, as they cannot create arbitrary but only particular Dicke states, indi-
vidual qubit addressing is required, the number of the necessary physical interac-
tions scales very fast with N, a special initial (Fock) state is required, insufficient
efficiency, very long interaction times, etc. Composite pulses of ultrasmall probabil-
ity offer a direct path toward the creation of large Dicke states as they can produce
a specific number of shared excitations among large-N ensembles of qubits.

A third example when a well-defined small transition probability is needed
arises when fine tuning quantum gates: in order to reach ultrahigh gate fidelity
a rotation gate at a well-defined tiny angle can be very useful. Moreover, such
small rotations alone can be used to test the accuracy of various quantum process
tomography protocols.

In this paper, we address this specific problem by designing composite pulse se-
quences, which seem to be the only quantum control technique capable to generate
a tiny transition probability that is robust to variations of the experimental para-
meters. The dominant majority of composite pulses in the literature are designed
to produce specific rotations on the Bloch sphere, typically at angles π (generating
complete population transfer), π/2 (half population transfer), π/4 and 3π/4, as
reviewed in Refs. [44, 45]. There exist just a few composite sequences which pro-
duce general rotations at arbitrary angles [3, 47, 48, 89, 90, 99]. Some of them can
be used for the present task of ultrasmall probability and they are listed below,
along with many newly derived composite sequences.

Composite rotations are broadly divided into two large groups called variable
and constant rotations. The variable rotations [44, 47, 99] feature well-defined trans-
ition probability but not well-defined phases of the propagator. Constant (or phase-
distortionless rotations) feature both well-defined populations and well-defined
phases of the propagator [3, 89, 90]. There are large markets for either of these,
with only constant rotations being suitable for quantum gates. However, they are
much more demanding to generate and much longer than variable rotations, for
the same order of error compensation. This will be clearly seen below as we con-
sider one type of constant rotations and two types of variable rotations.

After a description of the derivation method we present specific composite se-
quences of 2, 3 and 4 pulses, many of which have analytic expressions for the
composite parameters, and then proceed to longer sequences.
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5.2 the method

We wish to construct composite pulses, which produce a very low probability of
transition between two states |1⟩ → |2⟩, in an efficient and robust manner. Such
composite pulses are known as θ-pulses, as they produce a transition probability
p = sin2(θ/2). In the NMR literature one can find a number of θ pulses for θ = π/4
(called 45◦ pulses), θ = π/2 (called 90◦ pulses), and θ = 3π/4 (called 135◦ pulses).
Very few general formulae for an arbitrary value of θ exist in the literature. In our
case we need composite pulses, which produce transition probability p = 1/N ≪
1, which implies θ ≪ 1. Such composite pulses are designed here.

Each pulse in a composite sequence is considered resonant and hence it gener-
ates the propagator

U(A, ϕ) =

 cos(A/2) −ieiϕ sin(A/2)

−ie−iϕ sin(A/2) cos(A/2)

 , (5.1)

where ϕ is the phase of the coupling. The overall propagator for a sequence of n
pulses,

(A1)ϕ1(A2)ϕ2 · · · (An)ϕn , (5.2)

each with a pulse area Ak and phase ϕk, reads

Un = U(An, ϕn)U(An−1, ϕn−1) · · ·U(A2, ϕ2)U(A1, ϕ1), (5.3)

which, by convention, acts from right to left. One of the phases is always irrelev-
ant for the physically observed quantities (it is related to the global phase of the
wavefunction), and can be set to zero. As such, we always choose the first phase:
ϕ1 = 0. In other words, all other phases are relative phases of the respective pulse
to the phase of the first pulse.

The pulse areas Ak and the phases ϕk are the control parameters, which are
selected from the conditions that the transition probability,

P = |U12|2, (5.4)

has a specific target value p and it is robust to variations ϵ in the pulse area Ak(1+
ϵ). The error-free values of the pulse areas Ak are called nominal values. The relative
error ϵ is assumed to be the same for all pulses in the composite sequence. This is
reasonable if they are derived from the same source, which is usually the case.

The multiplication of the two-dimensional matrices in Eq. (5.3) leads to rapidly
growing expressions. Still, these are far more manageable than the ones coming
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from the three-dimensional matrices in the usual Bloch-vector derivation of com-
posite sequences.

One can proceed in two directions.

• One possibility is to expand the transition probability of Eq. (5.4) in a Taylor-
Maclaurin series vs ϵ. The coefficients in this series are functions of all Ak

and ϕk (k = 1, 2, . . . , n). We nullify as many of the first few such coefficients
(i.e. derivatives vs ϵ) as possible, which generate a set of equations for Ak

and ϕk. The result is a transition probability with a Taylor-Maclaurin series
expansion

P(ϵ) = p + O(ϵm), (5.5)

where p is the target value. We say that the respective composite sequence is
accurate up to order O(ϵm). We shall first present such composite sequences,
which are known as variable rotations in NMR and allow to easily reach error
compensation of very high order.

• Alternatively, one can take the propagator elements U11 = U∗
22 and U12 =

−U∗
21, expand them in Taylor-Maclaurin series vs ϵ, and carry out elimination

of as many lowest-order terms as possible. The result is a Taylor-Maclaurin
expansion of the propagator,

Un(ϵ) = Un + O(ϵl). (5.6)

Obviously, with the same number of free parameters, one can cancel of factor
of 2 fewer terms now, than in the expansion of the probability P. However, the
resulting composite sequences will be stabilized with respect to both the amp-
litudes and the phases of the overall propagator, rather than with respect to
the amplitudes only, as with Eq. (5.5). Such composite sequences create con-
stant rotations in NMR language, or, in quantum information terms, quantum
rotation gates.

We begin with the first approach, which delivers expressions as in Eq. (5.5), and
then proceed with the second approach, which delivers expressions of the type
(5.6).

5.3 small-probability composite sequences

5.3.1 Two-pulse composite sequences

We have derived two types of two-pulse composite sequences.
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5.3.1.1 Symmetric sequence of pulses

In the first type, the two pulse areas are equal to π/2,

S2 : (1
2 π)0(

1
2 π)π−θ. (5.7)

The transition probability is

P = cos2 πϵ

2
sin2 θ

2
. (5.8)

For
θ = arccos(1 − 2p) = 2 arcsin(

√
p), (5.9)

we find
P = p[1 − sin2(

1
2

πϵ)] = p[1 + O(ϵ2)]. (5.10)

This simplest composite sequence is accurate up to the second order O(ϵ2). For
example, for probabilities p = 10−2, 10−3, 10−4 and 10−5 we find ϕ = 0.0638π,
0.0201π, 0.0064π, and 0.0020π. These values correspond to 11.48◦, 3.62◦, 1.15◦,
and 0.36◦.

The advantage of these sequences is their extreme simplicity and the analytic
formula for the phase, which make it possible to immediately write down the
sequence for any target transition probability. The disadvantage is the availability
of a single control parameter only, which limits the error compensation to the first
order only. This is still superior over a single resonant pulse, which is accurate to
zeroth order only.

5.3.1.2 Asymmetric sequence of pulses

In the second two-pulse sequence, the pulse areas are different,

A2 : (A1)0(A2)ϕ2 . (5.11)

Here we have three control parameters — two pulse areas and a phase — which
allow us to compensate higher orders of errors. Now closed analytic expressions
for the parameters are not possible to derive. However, due to the fact that p ≪ 1,
we can use perturbation theory, which gives us the approximations

A1 = x − y, A2 = x + y, ϕ2 = π − ϕ, (5.12)
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p A1 A2 ϕ

10−2 0.689806 0.741105 0.048767
10−3 0.707103 0.723255 0.015417
10−4 0.712599 0.717704 0.004875
10−5 0.714341 0.715956 0.001542
10−6 0.714894 0.715404 4.88 × 10−4

10−7 0.715068 0.715229 1.54 × 10−4

10−8 0.715123 0.715174 4.88 × 10−5

Table 5.1: Pulse areas and phases (in units of π) for the composite sequence (5.11) (in units
of π) for a few values of the transition probability. All composite sequences have
the error order O(ϵ3).

with x ≈ 0.7151π, y ≈ 0.2553π
√

p, and ϕ ≈ 0.4875π
√

p. All these are valid for
p ≪ 1. The pulse areas and the phases for a few values of the transition probability
are given in Table 5.1.

The advantage of the composite sequence (5.11) over the symmetric one (5.7) is
that it is accurate to the third order in ϵ,

P = p[1 + O(ϵ3)]. (5.13)

The disadvantage is that it requires a larger total pulse area, about 1.43π compared
to just π for the symmetric sequence (5.7).

The performance of the two sequences is compared in Fig. 5.1. Both sequences
(5.7) and (5.11) outperform significantly the conventional single-pulse excitation
probability, which is very sensitive to pulse area errors. The asymmetric sequence
A2 of Eq. (5.11), with its three control parameters and error order O(ϵ3), outper-
forms the symmetric sequence S2 of Eq. (5.7), which has only one control para-
meter and error order O(ϵ2).

5.3.2 Three-pulse composite sequences

We have derived three three-pulse composite sequences, two symmetric and one
asymmetric.

5.3.2.1 Symmetric sequence of pulses

The symmetric sequence of pulses reads

S3 : (1
2 π)0πα+β(

1
2 π)2β, (5.14)
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Figure 5.1: Performance of the two-pulse composite sequences (5.7) (red dashed) and (5.11)
(blue solid) for the transition probability p = 10−4. The dotted curves show the
single pulse excitation probability for comparison.

where

α = θ/2, (5.15a)

β = arccos(sin α − cos α), (5.15b)

θ = arccos(1 − 2p) = 2 arcsin(
√

p). (5.15c)

The transition probability reads

P = [1 − sin4(ϵ/2)] sin2(θ/2). (5.16)

It is obviously accurate up to order O(ϵ4).
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p A1 A2 A3 ϕ2 ϕ3

10−2 0.5682 1.2436 0.6292 1.1533 0.2546
10−3 0.5904 1.2276 0.6232 1.0785 0.1405
10−4 0.6001 1.2229 0.6184 1.0419 0.0785
10−5 0.6049 1.2214 0.6151 1.0229 0.0441
10−6 0.6074 1.2209 0.6131 1.0126 0.0248
10−7 0.6087 1.2208 0.6119 1.0070 0.0139
10−8 0.6094 1.2207 0.6113 1.0039 0.0078

Table 5.2: Pulse areas and phases (in units of π) for the composite sequences of 3 pulses
(5.22) for a few values of the transition probability p. All composite sequences
have the error order O(ϵ5).

The sequence (5.14) is derived as follows. First, we calculate the overall propag-
ator of Eq. (5.3) for N = 3 pulses. Numerical evidence suggests that the pulse areas
could be taken as in Eq. (5.14), i.e. a π pulse in the middle sandwiched by two half-
π pulses. We take the first phase to be 0, and we are left with two phases to be
determined. The overall three-pulse transition probability for zero error (ϵ = 0) is
readily calculated to be

P = |U21|2 = sin2(ϕ2 − ϕ3/2). (5.17)

If we set P = sin2(θ/2) (as for a resonant θ pulse), we find ϕ3 = 2ϕ2 − θ. Next we
calculate the first few derivatives of U21 with respect to the error ϵ and find

U′
21(ϵ = 0) = 0, (5.18)

U′′
21(ϵ = 0) = [1 + 2 cos(θ) + 2 cos(ϕ2)

+ 2 cos(θ − ϕ2) + cos(θ − 2ϕ2)]/8, (5.19)

U′′′
21(ϵ = 0) = 0. (5.20)

The vanishing of the odd-order derivatives follows from the choice of symmetric
pulse areas in Eq. (5.14). By setting ϕ2 = θ/2 + β the equation for U′′

21(ϵ = 0)
reduces to

2 cos β cos(θ/2) + cos2 β + cos θ = 0. (5.21)

has 4 solutions, two complex and two real, of which one positive and one negative.
The real positive solution is given by the expression listed in Eq. (5.14). The first
nonzero derivative is U(4)

21 (ϵ = 0). The availability of analytic formulae for the
phases allows us to find their values for any value of the transition probability.
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Figure 5.2: Performance of the three-pulse composite sequences (5.14) (red dashed) and
(5.22) (blue solid) for the transition probability p = 10−4. The dotted curves
show the single pulse excitation probability for comparison.

5.3.2.2 Asymmetric sequence of pulses

The most general three-pulse composite sequence has the form

A3 : (A1)0(A2)ϕ2(A3)ϕ3 . (5.22)

Although the composite sequence (5.22) costs more total pulse area (≈ 2.44π) than
the preceding two, it is accurate to order O(ϵ5). The pulse areas and the phases
computed numerically are given in Table 5.2.

The performance of the three-pulse sequences is illustrated in Fig. 5.2. Both
sequences (5.14) and (5.22) outperform both the conventional single-pulse excita-
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tion probability and the two-pulse composite sequences (5.7) and (5.11) of Fig. 5.1.
Moreover, the asymmetric sequence A3 of Eq. (5.11), which is of error order O(ϵ5),
clearly outperforms the symmetric sequence S3 of Eq. (5.14), which is of error order
O(ϵ4).

Because the three-pulse sequences seem to be the “sweet spot” in terms of per-
formance (error order and high-fidelity window width) versus cost (total pulse
area and control complexity), they deserve some discussion. There are clear ad-
vantages and disadvantages of each of these two sequences. The S3 sequence has
a nice analytic form and a total pulse area of 2π. However, it has lower error order
than A3. The real advantage of the sequence S3 is its analytic form, which makes
it very easy to calculate the composite phases for any target transition probability
p. The A3 sequence looks less attractive as neither the pulse area nor the phases
are rational numbers and they are all numerical, but this sequence has the higher
order of error compensation, although at the expense of the larger pulse area of
about 2.44π. Its real inconvenience is in the fact that for target transition probabil-
ities not listed in Table 5.2 one has to calculate them numerically, although this is
not a very difficult task.

5.3.3 Four-pulse composite sequences

The most general four-pulse composite sequence has the form

(A1)0(A2)ϕ2(A3)ϕ3(A4)ϕ4 . (5.23)

We present three sets of four-pulse composite sequences, two symmetric and one
asymmetric.

5.3.3.1 Symmetric sequences of pulses

The first symmetric sequence consists of identical nominal π/2 pulses (but with
different phases) [47],

S4a : (1
2 π)0(

1
2 π) 1

2 π(
1
2 π) 3

2 π−θ(
1
2 π)π−θ, (5.24)

where θ = 2 arcsin
√

p. Its total pulse area is just 2π. The overall transition probab-
ility reads

P = p[1 − sin4(πϵ/2)]. (5.25)

Obviously, it is accurate up to order O(ϵ4).
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The other symmetric sequence of pulses reads [47]

S4b : (1
2 π)0π 2

3 ππ 5
3 π−θ(

1
2 π)π−θ. (5.26)

The overall transition probability reads

P = p[1 − sin6(πϵ/2)]. (5.27)

Obviously, in return to the larger total pulse area ot 3π compared to the previous
sequence (5.24) it is accurate up to the higher order O(ϵ6).

These sequences are very convenient as the availability of exact analytic formu-
lae for the phases allows us to find their values for any value of the transition
probability.

5.3.3.2 Asymmetric sequences

The most general three-pulse composite sequence has the form

A4 : (A1)0(A2)ϕ2(A3)ϕ3(A4)ϕ4 . (5.28)

All pulse areas and phases are free control parameters, which allow it to com-
pensate a higher error order. The pulse areas and the phases are computed numer-
ically and are listed in Table 5.3. Although the asymmetric composite sequence
(5.28) costs more total pulse area (≈ 3.44π) than the preceding two sequences S4a
and S4b, it is accurate to the higher order O(ϵ7).

The performance of the four-pulse sequences is illustrated in Fig. 5.3. All of them
significantly outperform the single pulse profile and provide considerable stabil-
isation at the target transition probability value. The best performance is delivered
by the asymmetric sequence A4, which has the error order O(ϵ7), followed by S4b,
with the error order O(ϵ6), and then S4a, with the error order O(ϵ4). However, this
ranking follows the total pulse area — the cost factor — which is ≈ 3.41π for A4,
3π for S4b, and 2π for S4a. Note that the error order O(ϵ4) for S4a is the same
as the one for the three-pulse sequence S3 and one can verify that they generate
similar excitation profiles.

5.3.4 Higher number of pulses

Higher number of pulses present the opportunity for an error compensation of
a higher order. There exist analytic symmetric composite sequences for arbitrary
rotations, which can be used for small p too [47]. They are constructed as follows.
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Figure 5.3: Performance of the four-pulse symmetrci composite sequences (5.24) (red
dashed), (5.26) (purple long-dashed) and the asymmetric sequence (5.28) (blue
solid) for the transition probability p = 10−4. The dotted curves show the single
pulse excitation probability for comparison.

We can use a composite π/2 pulse to derive a composite θ-pulse by applying a
composite π/2 pulse sequence C, followed by the composite sequence CR

θ , which
is the time-reversed sequence C, with all its phases shifted by the same phase shift
θ,

C0CR
θ , (5.29)

an idea introduced by Levitt and Ernst [88]. Moreover, if the sequence C has the
error order O(ϵn) then the composite θ sequence (5.29) has the error order O(ϵ2n)

[47]. A few examples follow.
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p A1 A2 A3 A4 ϕ2 ϕ3 ϕ4

10−2 0.5367 1.1586 1.1360 0.5833 0.8499 1.5547 0.4360
10−3 0.8685 1.0434 0.3702 0.5174 1.0634 0.8847 0.0128
10−4 0.8165 0.9044 0.5579 0.6423 1.0362 0.9682 0.0146
10−5 0.7854 0.8335 0.6433 0.6905 1.0207 0.9856 0.0090
10−6 0.7669 0.7937 0.6875 0.7141 1.0118 0.9926 0.0052
10−7 0.7551 0.7698 0.7108 0.7255 0.9933 1.0042 1.9972
10−8 0.7494 0.7578 0.7244 0.7328 0.9962 1.0022 1.9984

Table 5.3: Pulse areas and phases (in units of π) for the composite sequences of 4 pulses
(5.28). All composite sequences have the error order O(ϵ7).

The composite sequence S2 of Eq. (5.7) becomes a composite π/2 pulse for θ =

π/2, which can be used in the twinning construction (5.29),

(1
2 π)0(

1
2 π) 1

2 π(
1
2 π) 3

2 π−θ(
1
2 π)π−θ, (5.30)

which is the same as the sequence S4a of Eq. (5.24). Because the sequence S2 has
the error order O(ϵ2) then the composite sequence S4a has the error order O(ϵ4),
as found in the previous section.

The composite sequence S3 of Eq. (5.14) for θ = π/4 reads

(1
2 π)0π 3

4 π(
1
2 π)π, (5.31)

and it has the error order O(ϵ4). By using the twinning construction (5.29) we find
a θ composite sequence of order O(ϵ8),

(1
2 π)0π 3

4 π(
1
2 π)π(

1
2 π)2π−θπ 7

4 π−θ(
1
2 π)π−θ. (5.32)

One can build θ composite sequences of arbitrary length and arbitrary error
order compensation by twinning the π/2 composite sequences [47]

(π/2)0πϕ2πϕ3 · · ·πϕN−1(π/2)ϕN , (5.33)

composed of a sequence of N − 2 nominal π pulses, sandwiched by two pulses of
areas π/2, with phases given by the analytic formula

ϕk =
(k − 1)2

2(N − 1)
π (k = 1, 2, . . . , N). (5.34)

It is easy to verify that the sequences (5.30) and (5.32) (after trivial population-
preserving transformation of the phases) belong to such a family of sequences.
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Because the sequence (5.33) has the error order O(ϵ2(N−1)) the corresponding
twinned sequence (5.29) will have the error order O(ϵ4(N−1)).

Another, asymmetric family of π/2 composite sequences can be used too [47],

(π/2)0πϕ2πϕ3 · · ·πϕN−1(π)ϕN , (5.35)

composed of a sequence of N − 1 nominal π pulses, preceded by a nominal π/2
pulse, with phases given by the analytic formula

ϕk =
2(k − 1)2

2N − 1
π (k = 1, 2, . . . , N). (5.36)

It has the error order O(ϵ2N−1). Hence the twinning method (5.29) generates θ se-
quences of the error order O(ϵ2(2N−1)). For instance, for N = 3 we find by twinning
the θ sequence

(1
2 π)0π 2

5 π
(π)8

5 π
(π)3

5 π−θ
π 7

5 π−θ
(1

2 π)π−θ, (5.37)

which has the error order O(ϵ10).
Regarding the asymmetric composite sequences of 2, 3 and 4 pulses, presented

above and derived numerically, it is computationally much harder to derive similar
sequences for more than 4 pulses. Moreover, the advantage they deliver in terms of
error order compensation for a given number of pulses compared to the symmetric
sequences seems to decrease with the number of pulses N and approach the point
when the results do not repay the labour.

5.4 quantum gates for ultrasmall rotations

Ultrasmall rotation gates are more demanding to construct due to the necessity to
have both the probabilities and the phases error-compensated. Mathematically, this
is equivalent to expanding the propagator of the gate in a Taylor-Maclaurin series
versus the error ϵ and set to zero the first few terms to the same error order O(ϵm)

in all propagator matrix elements. Below we present several sequences, which pro-
duce high-fidelity rotation gates, two of which are known in the literature and one
is derived here.

5.4.1 First-order error compensation

The three-pulse rotation gate has been derived by Wimperis [89],

W3 : θ0πϕπ3ϕ, (5.38)
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R otation gate G3: (1
2 π + x)ϕ1ππ+y(

1
2 π + x)ϕ1

p x ϕ1 y
10−2 2.5 × 10−3 2.492 × 10−2 5.672 × 10−2

10−3 2.5 × 10−4 7.904 × 10−3 1.797 × 10−2

10−4 2.5 × 10−5 2.500 × 10−3 5.683 × 10−3

10−5 2.5 × 10−6 7.906 × 10−4 1.797 × 10−3

10−6 2.5 × 10−7 2.500 × 10−4 5.684 × 10−4

Table 5.4: Parameters of the composite sequence G3 of Eq. (5.39) for different transition
probabilities p.

with θ = arccos(1 − 2p) = 2 arcsin
√

p and ϕ = arccos(−θ/(2π)) ≈ 1
2 π +

√
p. It is

accurate up to order O(ϵ2). It is a phase-distortionless sequence and hence suitable
for a rotation gate.

Another three-pulse rotation gate has the form [48]

G3 : αϕ1πϕ2αϕ1 , (5.39)

where α is determined from the equation

π sin(α)
α

= 2 cos(θ/2). (5.40)

Given α, we can find ϕ1 and ϕ2 from

2α cos(ϕ1 − ϕ2) + π = 0, (5.41a)

sin(ϕ1 − ϕ2) = sin(θ/2) cos(ϕ1). (5.41b)

This composite sequence is related to the SCROFULOUS composite pulse [169]
and it is accurate to the error order O(ϵ2).

The values of the pulse area and the composite phases are given in Table 5.4.

5.4.2 Second-order error compensation

A well-known composite seqeunce, which compensates the second-order error is
the BB1 sequence of Wimperis [3],

BB1 = (π/2)0πχ(2π)3χπχ, (5.42)

with χ = arccos(−θ/4π). It produces arbitrary phase-distortionless rotations at
the angle θ with the error order O(ϵ3)
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5.5 conclusions

We presented a solution to the problem of generating well-defined very small ex-
citation of a two-state quantum transition. The method uses composite pulse se-
quences of two, three, four and more pulses. Both symmetric and asymmetric,
analytic and numeric classes of sequences have been presented and analyzed in
detail.

The results in this paper can be useful in application such as single-photon gen-
eration by a cold atomic ensemble of N atoms. A composite sequence producing
a transition probability of 1/N will make sure that only one excitation is shared
within the ensemble, to be subsequently released by a scheme like DLCZ. An-
other possible application is fine tuning of quantum gates, in which accurate small
adjustments of the rotation angle are needed in order to reach high fidelity. Yet an-
other application is the generation of huge Dicke states in cold atomic ensembles
or trapped ions by global collective addressing.





6
C O M P O S I T E P U L S E S F O R U LT R A R O B U S T

O R U LT R A S E N S I T I V E C O N T R O L

Composite pulses, which produce ultrabroadband and ultranarrowband rotations
on the Bloch-Poincaré spheres, are presented. The first class plays a role for design
of achromatic polarization retarders, when the second class corresponds to chro-
matic polarization filters.

6.1 introduction and motivation

In comparison to the other quantum control methods, CPs is efficient and versatile
as follows from the first classification into broadband (BB), narrowband (NB) and
passband (PB) classes [3].

All the artillery of ultrahigh-fidelity (flat-top), broadband, constant rotation
(full SU(2) matrix optimized) CPs is shown in [48], where well-known BB1 from
Wimperis is one of the representatives of this subclass. CPs of this subclass, in
contrast to altering-top BB2, maintain 99.99% fidelity (ultrahigh), viz. infidelity
is below 10−4 error of quantum computation benchmark required in QC and QI.
On the contrary, in PO, ultrabroadness is more important than ultrahigh-fidelity.
Nevertheless, CPs in [48] can be used also to design achromatic ultrahigh-fidelity
constant half-, quarter- and arbitrary-wave plates with an arbitrary phase retarda-
tion.

Based on this concept of CPs for rotations on the Bloch space, Ardavan pro-
posed to use the so-called BB1 or BB2 sequences for polarization retarders (i.e.,
rotations on the Poincaré sphere) [170]. He already found that these stacked com-
posite retarders in almost all cases outperform the conventional compound-type
retarders. Existence of BB2 and NB2 sequences leads to the idea of altering CPs,
which improve the feature (BB or NB) of the pulse at the expense of precision due
to alternations (inflection points) on the top (BB) or on the bottom (NB) of the er-
rant transition probability. We call these new subclasses of CPs as ultrabroadband
and ultranarrowband respectively.

103
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With novel method (see Sec. 6.3) we have derived ultrabroadband and ultranar-
rowband CPs [61], when θ = π. These CPs are useful in the applications, where
high-accuracy (about 90%) is enough (although higher precision can be achieved in-
creasing number of pulses, due to the novel method). Besides PO, they can be used
for high-fidelity ultrarobust (QC) or ultrasensitive (local addressing of trapped
ions and atoms in QS) population transfer. The five-pulse (with the same run-time
T = 5π) ultra-BB and ultra-NB CPs outperform well-known BB2 and NB2 pulses
respectively, which were expected as the number of alternations is higher in the
case of our CPs.

Originally, CPs are derived for θ rotations (x−, y−rotations or mixed rotations
with arbitrary ϕ). Here, we took into account z−rotations on the Bloch sphere,
which we call as phasal ζ CPs (composite phase gates). We applied our novel
method for derivation of ultra-BB rotational θ and phasal composite ζ pulses.

6.2 jones matrices and on the quantum-classical analogy

The Poincaré sphere shares much in common with the Bloch sphere: both the
evolution matrix of quantum two-state system and Jones matrix for a retarder in
LR polarization basis (with a phase shift φ, and rotated at an angle η) represent
rotations on the Bloch-Poincaré spheres.

Jones polarization matrix for a retarder with a phase shift φ (the phase shift ap-
plied between the ordinary and the extraordinary ray passing through the retarder)
and rotated at an angle η (the rotation angle of the retarder’s optical axis) is given
as (in the left-right circular polarization basis)

Jη(φ) =

 cos
( φ

2

)
i sin

( φ
2

)
e2iη

i sin
( φ

2

)
e−2iη cos

( φ
2

)
 , (6.1)

note, that here, η in PO differs from θ rotation parameter in NMR and QC.
For example, half- and quarter-wave plates rotated at an angle η, i.e. (λ/2)η,

(λ/4)η, are described by Jη(π) and Jη(π/2) respectively.
Ideal half-, quarter- and arbitrary-wave plates are described with Jones polariza-
tion matrix J0(φ) in the LR basis (up to a global phase factor):

J0(φ) =

 cos
( φ

2

)
i sin

( φ
2

)
i sin

( φ
2

)
cos

( φ
2

)
 (6.2)

J0(π) =

 0 i

i 0

 (6.3)
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J0(π/2) = 1√
2

 1 i

i 1

 (6.4)

Jones matrix for a rotator in the LR basis represents

Jη =

 eiη 0

0 e−iη

 . (6.5)

Due to symmetry i → −i, and transformations φ → θ, η → ϕ/2 from PO to
NMR QC, we have deal with the same mathematical framework

• Polarization retarder is equivalent to x-rotation or quantum rotation gate,
and

• Polarization rotator is equivalent to z-rotation or quantum phase gate.

• Thus, one can apply the results from QC into the PO and vice versa, espe-
cially to use quantum control techniques and share knowledge between dif-
ferent areas. We see quantum-classical analogy of the rotations on the Bloch-
Poincaré spheres. CPs (composite rotations) is interdisciplinary technique.

• To adapt the results from NMR QC to PO, it is necessary to use Ai → φi

and to change ηi → φi and ϕi → ±2ηi in expressions (5.1) and (6.1) (sign
is arbitrary as the composite phases with negative sign are also solutions in
symmetric sequences). So, halfed composite phases are necessary to use for
ηi-s in the PO.

Henceforward, we will use NMR QC terminology and notation, and the results
for PO can be obtained by abovementioned way.

6.3 derivation method

So, errant overall propagator is SU(2) matrix

Un(ϵ) =

 U11(ϵ) U12(ϵ)

−U ∗
12(ϵ) U ∗

11(ϵ)

 , (6.6)

where U11(ϵ) and U12(ϵ) are the complex-valued Cayley-Klein parameters satisfy-
ing |U11(ϵ)|2 + |U12(ϵ)|2 = 1. We set their zero-error values to the target values,

U11(0) = cos(θ/2), U12(0) = −i sin(θ/2) exp(iϕ), (6.7)
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for rotational θ pulses, or

U11(0) = exp(−iζ/2), U12(0) = 0, (6.8)

for phasal ζ pulses.
Taking Eqs. (6.7) and (6.8) as a guide, let’s consider the general form for general

composite rotation

Un(ϵ) =

 exp(−iζϵ/2) cos(θϵ/2) −i sin(θϵ/2) exp(iϕϵ)

−i sin(θϵ/2) exp(−iϕϵ) exp(iζϵ/2) cos(θϵ/2)

 , (6.9)

where θϵ is errant rotation angle and arranges x− or y−rotations, i.e. rotational θ

pulses or rotation gates, ϕϵ is errant relative phase angle and provides the turns
from x− to y−rotation, ζϵ is errant phase-shift angle (sometimes called geometric
phase angle) and arranges z−rotations or phase-shift gate up to global phase in the
case of phasal ζ pulses and also corresponds to Berry phase (originally examined
in cyclic adiabatic processes) alternative in conventional CPs or rotations, i.e. rota-
tional θ pulses. For rotational θ pulses parameters follows θϵ=0 = θ, ζϵ=0 = 0 and
ϕϵ=0 = ϕ (ϕ = 0 is the case for ideal θ pulse), and for phasal ζ pulses parameters
are equal ζϵ=0 = ζ, θϵ=0 = 0 and ϕϵ=0 = const.

A single resonant pulse is errant linearly θϵ = θ(1 + ϵ), when for general com-
posite rotation the particular forms of dependences on pulse area error ϵ of the
three parameters are generally unknown and related to the structure of CPs, i.e. to
the choice of pulse areas and composite phases for the certain number of pulses.

Phasal ζ CPs belong to the case θ = 0 and ϕ = const. At least two CPs are
required to obtain single phasal ζ pulse.

Note that derivation method presented in Subsec. 6.3.1 does not care about rota-
tion angle, geometric and relative phase stabilities. Here, we have deal with altern-
ating CPs, which make the feature (robustness/sensitivity or both) of the pulse
more powerful, sometimes called ultra, at the expense of precision due to alterna-
tions (at the center/ on the wings or both).
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6.3.1 Ultra-BB, ultra-NB and ultra-PB

6.3.1.1 Case of rotational θ pulses

Let’s maximize the population transfer area (6.10) at the whole-range of the error
bandwidth, i.e. from ϵ = −1 to ϵ = 1 (ultrabroadband θ pulses)

∑b,n
∆
=

∫ 1

−1
p(ϵ) dϵ, (6.10)

or minimize it (ultranarrowband θ pulses). Here p(ϵ) = 1− |U11(ϵ)|2 = |U12(ϵ)|2 =

sin2(θϵ/2) is errant transition probability.
In (6.10) p(ϵ = 0) = p(θ = π) = sin2 θ/2|θ=π = 1, at the center of bandwidth,

is transition probability in QC: when pulse area error is zero, the qubit-state com-
pletely transfers from |0⟩ to |1⟩ due to π-rotation on the Bloch sphere. In PO this
is mathematically equivalent (see Subsec. 6.2) to the conversion of the polarization
state from |L⟩ to |R⟩ (or |H⟩ to |V⟩) due to π-rotation on the Poincaré sphere

∫ 2π

0
I(φ′) dφ′ =

∫ 2π

0
|U12(φ′)|2 dϵ, (6.11)

and I(φ′) describes the conversion efficiency of the half-wave plate I(φ′ = π) = 1.
Note that for rotational θ pulses, the target matrix is

Un =

 cos(θ/2) −i sin(θ/2) exp(iϕ)

−i sin(θ/2) exp(−iϕ) cos(θ/2)

 , (6.12)

and in the case of θ = π and ϕ = 0 is equivalent to x-rotation on the Bloch sphere
representing Rx(π) rotation gate in the QC (see (1.5)). On the Poincaré sphere it
maps to the Jones matrix for a half-waveplate J0(π) in the PO (see (6.3)).

6.3.1.2 Case of phasal ζ pulses

Let’s maximize the phase shifting area (6.13) at the whole-range of the error band-
width, i.e. from ϵ = −1 to ϵ = 1 (ultrabroadband ζ pulses)

∑ ∆
=

∫ 1

−1
z(ϵ) dϵ. (6.13)
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Here the phase shifting z(ϵ) = (U11(ϵ)−U ∗
11(ϵ)) /(2i) is equal to the trace fidelity

in our case ζ = π

FT = 1
2Tr [Un(ϵ)Un

†] = cos
(

ζ − ζϵ

2

)
ζ=π

cos
(

θϵ

2

)
= sin

(
ζϵ

2

)
cos

(
θϵ

2

)
, (6.14)

and the target matrix is

Un =

 exp(−iζ/2) 0

0 exp(iζ/2)


ζ=π

=

 −i 0

0 i

 , (6.15)

which corresponds to the z-rotation on the Bloch sphere acting as Z phase gate in
the QC (see (1.14)). On the Poincaré sphere it matches with the Jones matrix for a
polarization rotator Jπ in the PO (see (6.5)).

6.4 ultrabroadband rotational θ = π pulses

The most convenient way to construct ultrabroadband rotational π pulses is the
symmetric design consisting of nominal π pulses

πϕ1πϕ2 . . . , πϕk/2πϕk/2+1πϕk/2 . . . πϕ2πϕ1 , (6.16)

where k = N − 1 is the number of inflection points in the errant transition probab-
ility vs the pulse area error plot (the number of alternations of the plot). Since the
relative constituent phases play a significant role in the calculation, the first and
the last phases can be taken as zero ϕ1 = 0.

Ultrabroadband rotational θ = π CPs, derived by the method Subsec. 6.3.1, have
maximum state transfer area for the certain number of CPs, hence are unique. For
example, five-pulse sequence UB5 with 4 alternations is better than the well-known
BB2 sequence with 2 alternations. We have derived up to eleven sequences, which
increase the broadness range of the original rotational sequence (a single pulse)
more than four times (from 20.5% to 87.7%), and the transition probability area
is increased by 83.(3)% by the eleven-π UB11 sequence. Composite phases for the
ultrabroadband rotational pulses are shown in the Table 6.1, and the transition
probability is plotted in Figure 6.1. For comparison, our five-π UB5 CP sequence
has the transition probability area equal to 5

3 = 1.(6), which is smaller than the
area of about 1

8(11 +
√

2) ≈ 1.552 of the well-known five-π BB2 sequence, i.e. by
about 0.115. Error robustness range of UB5 is equal to 75.2% and is broader than
the range of 64.4% of BB2 sequence.
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Figure 6.1: Transition probability p(ϵ) of ultrabroadband rotational π pulses. The numbers
N on the curves refer to CP sequences UBN listed in the Table 6.1. As noted
above, the curves have k = N − 1 alternations on the top of the plot, unlike the
BB2 sequence, which has 2 alternations, so it’s worse than our five-π UB5.

6.5 ultranarrowband rotational θ = π pulses

Since NB pulses are asymmetric in composite phases, to construct ultranarrow-
band rotational π pulses we choose the antisymmetric design consisting of nom-
inal π pulses

πϕ1πϕ2 . . . , πϕk/2πϕk/2+1π−ϕk/2 . . . π−ϕ2π−ϕ1 , (6.17)

where k = N − 1 is the number of inflection points in the errant transition prob-
ability vs the pulse are error plot (the number of alternations of the plot). For
convenience, the middle phases can be taken as ϕk/2+1 = π.

Ultranarrowband rotational θ = π CPs, derived by the method Subsec. 6.3.1,
have minimum state transfer area for the certain number of CPs, hence are unique.
For example, five-pulse sequence UN5 with 4 alternations is better than the well-
known NB2 sequence with 2 alternations. We have derived up to eleven sequences,
which decrease the narrowness range at 50% of probability, viz. full width at half
maximum (FWHM), of the original rotational sequence (a single pulse) about
6.75 times (from 50% to 7.4%), and the transition probability area is decreased
by 83.(3)% by the eleven-π UN11 sequence. Composite phases for the ultranarrow-
band rotational pulses are shown in the Table 6.2, and the transition probability is
plotted in Figure 6.2. For comparison, our five-π UN5 CP sequence has the trans-
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Figure 6.2: Transition probability p(ϵ) of ultranarrowband rotational π pulses. The num-
bers N on the curves refer to CP sequences UNN listed in the Table 6.2. As
noted above, the curves have k = N − 1 alternations on the bottom of the plot,
unlike the NB2 sequence, which has 2 alternations, so it’s worse than our five-π
UN5.

ition probability area equal to 1
3 = 0.(3), which is smaller than the area of about

1
8(5 −

√
2) ≈ 0.448 of the well-known five-π NB2 sequence, i.e. by about 0.115.

Error sensitivity range of UN5 at FWHM is equal to 14.9% and is narrower than
the FWHM range of 20.8% of NB2 sequence.

6.6 ultrabroadband phasal ζ = π pulses

As usual (cf. (3.3)), we construct ultrabroadband phasal π pulses with asymmetric
design consisting of nominal π pulses

πϕ1πϕ2 . . . πϕk/2+1 · πϕ1+
1
2 ππϕ2+

1
2 π . . . πϕk/2+1+

1
2 π, (6.18)

where k = N − 2 is the number of inflection points in the trace fidelity vs the pulse
are error plot (the number of alternations of the plot). Careful analysis shows that
the first few phases can be taken as zero in the calculation (cf. Table 6.3).

Ultrabroadband phasal ζ = π CPs, derived by the method Subsec. 6.3.1, have
maximum trace fidelity area for the certain number of CPs, hence are unique. We
have derived up to fourteen sequences, which increase the broadness range of the
original phasal sequence (two pulses) about four times (from 20.5% to 81.5%), and
the trace fidelity area is increased by the 75% by the fourteen-π UBPh14 sequence.
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Figure 6.3: Trace fidelity z(ϵ) of ultrabroadband phasal π pulses. The numbers N on the
curves refer to CP sequences UBPhN listed in the Table 6.3. As noted above,
the curves have k = N − 2 alternations on the top of the plot.

Composite phases for the ultrabroadband phasal pulses are shown in the Table 6.3,
and the trace fidelity is plotted in Figure 6.31.

6.7 comments and conclusions

We presented a number of CP sequences consisting of π pulses for transition of the
quantum state from |0⟩ to |1⟩ in ultrarobust and ultrasensitive manners, according
to the pulse area deviation ϵ. Using quantum-classical analogy, we presented a
number of sequences of half-wave plates for conversion of the polarization state
from |H⟩ to |V⟩ or from |L⟩ to |R⟩ in ultrabroadband and ultranarrowband ways,
according to the phase-shift (retardation) deviation φ′ − φ = φ′ − π. Our UB5
pulse already outperforms the well-known BB2 pulse in terms of broadness, e.g.
UB5 maintains 90% of transition probability (or conversion efficiency) over the
broadness (error-correction or retardation deviation) range spanning a width of
roughly 1.504π from the whole 2π, approximately by 17% larger than roughly
1.288π, the width of BB2. Our longest UB11 pulse covers approximately 88% of
the whole width for the same benchmark. Our UN5 pulse already outperforms
the well-known NB2 pulse in terms of narrowness, e.g. FWHM of UN5 is roughly

1 Four, eight and twelve phasal sequences are below 100% fidelity at the center (errorless case).
Moreover, the trace fidelity is slightly less than 90% in the case of the UBPh4 sequence. Note that
in some applications where ultrahigh precision is not a mandatory criterion, these violations are
minor deviations from the requirements, and these CP sequences can be applied.
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0.298π, approximately 1.4 times narrower than FWHM of NB2. Our longest UNB11
pulse covers approximately 21% of the whole width for the same benchmark.

Furthermore, using the similar derivation approach of CPs, we theoretically
design ultrarobust Z quantum gate via a number of CP sequences consisting of
π pulses, and equivalently ultrabroadband polarization π rotator. Our longest
UBPh14 pulse maintains 90% of trace fidelity over a broadness range of roughly
1.63π.

With the choice of the pulse area structure (or the phase-shift structure in PO)
of the CP (or combination of wave-plates in PO), one can apply the method of
derivation to obtain arbitrary transition (or arbitrary conversion in PO) from the
given quantum (or polarization) state to the arbitrary quantum (or polarization)
state in ultrabroadband and ultranarrowband manners. Certainly, achieving super-
position state 1√

2
( |0⟩ ± i |1⟩)2 (or left-right circular polarization bases |L⟩, |R⟩) is

of interest.
Results are promising for applications in NMR, QS and, especially PO, where

the property of robustness/broadness or selectivity/narrowness is more important
and ultrahigh-precision is not obligatory as in QC. In this sense, we acknowledge
also the future applications that are not on demand due to the absence of the
method.

2 An ideal π/2 rotation on the Bloch sphere from |0⟩ or |1⟩ initial states presents these states. Actual
superposition states 1√

2
( |0⟩ ± |1⟩) can be obtained with the same fashion targeting π/2 rotation

with phase ϕ = π/2.



Table 6.1: Phases of symmetric, altering, ultrabroadband composite rotational θ = π sequences of N = k + 1 nominal π pulses, which produce
ultrarobust population transfer in the ultrabroadband pulse area error correction range. The last column gives the high-transition
probability range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation wherein the errant transition probability is above the value
0.9.

Name Pulses Number of alternations ∑b Phases Transition probability

k (inflection points) cf. (6.10) ϕ1, ϕ2, ϕ3, . . . , ϕk/2, ϕk/2+1, ϕk/2, . . . , ϕ3, ϕ2, ϕ1 p(ϵ) = 90%

(in units π) (according to (6.16)) error correction range

single 1 0 1 0 [0.79517π, 1.20483π]

UB3 3 2 1.5 0, 1
2 [0.376π, 1.624π]

UB5 5 4 1.(6) 0, 0.5825, 0.3737 [0.248π, 1.752π]

UB7 7 6 1.75 0, 0.6230, 0.4918, 0.7558 [0.185π, 1.815π]

UB9 9 8 1.8 0, 0.6490, 0.5514, 0.8458, 0.6774 [0.148π, 1.852π]

UB11 11 10 1.8(3) 0, 0.6677, 0.5886, 0.9044, 0.7786, 0.9663 [0.123π, 1.877π]

BB2 5 2 ≈ 1.552 0, 1
2 , 7

4 , 7
4 , 1

2 (all phases in units π) [0.356π, 1.644π]



Table 6.2: Phases of asymmetric, altering, ultranarrowband composite rotational θ = π sequences of N = k + 1 nominal π pulses, which produce
ultrasensitive population transfer in the ultranarrowband pulse area error sensitivity range. The last column gives the full width at
half maximum range [π(1 − ϵ0), π(1 + ϵ0)] of pulse area error sensitivity wherein the errant transition probability is above the value
0.5. Note that the full population transfer occurs at the center for zero pulse area error p(ϵ = 0) = 1.

Name Pulses Number of alternations ∑n Phases FWHM of

k (inflection points) cf. (6.10) ϕ1, ϕ2, ϕ3, . . . , ϕk/2, ϕk/2+1,−ϕk/2, . . . ,−ϕ3,−ϕ2,−ϕ1 transition probability

(in units π) (according to (6.17)) error sensitivity range

single 1 0 1 0 [0.5π, 1.5π]

UN3 3 2 0.5 1
2 , 1 [0.772π, 1.228π]

UN5 5 4 0.(3) 0.5896, 0.4104, 1 [0.851π, 1.149π]

UN7 7 6 0.25 0.5193, 0.6121, 0.3671, 1 [0.889π, 1.111π]

UN9 9 8 0.2 0.5451, 0.4880, 0.6235, 0.3340, 1 [0.911π, 1.089π]

UN11 11 10 0.1(6) 0.5173, 0.5562, 0.4690, 0.6312, 0.3209, 1 [0.926π, 1.074π]

NB2 5 2 ≈ 0.448 0, 1
2 , 5

4 , 5
4 , 1

2 (all phases in units π) [0.792π, 1.208π]



Table 6.3: Phases of asymmetric, altering, ultrabroadband composite phasal ζ = π sequences of N = k + 2 nominal π pulses, which produce
ultrarobust Z phase gate in the ultrabroadband pulse area error correction range. The last column gives the high-fidelity range
[π(1 − ϵ0), π(1 + ϵ0)] of pulse area error compensation wherein the trace fidelity is above the value 0.9.

Name Pulses Number of alternations ∑ Phases Trace fidelity

k (inflection points) cf. (6.13) ϕ1, ϕ2, . . . , ϕk/2+1, ϕ1 +
1
2 , ϕ2 +

1
2 , . . . , ϕk/2+1 +

1
2 z(ϵ) = 90%

(in units π) (according to (6.18)) error correction range

two 2 0 1 0 [0.79517π, 1.20483π]

UBPh4 4 2 1.(3) 0, 0.6743 [0.508π, 1.492π]

UBPh6 6 4 1.5 0, 0, 3
4 [0.376π, 1.624π]

UBPh8 8 6 1.6 0, 0, 0.8048, 0.6000 [0.299π, 1.701π]

UBPh10 10 8 1.(6) 0, 0, 0, 0.4129, 1.0871 [0.248π, 1.752π]

UBPh12 12 10 ≈ 1.714 0, 0, 0, 0.8624, 0.7142, 0.5696 [0.212π, 1.788π]

UBPh14 14 12 1.75 0, 0, 0, 0, 0.8798, 0.7500, 0.6202 [0.185π, 1.815π]
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B R O A D B A N D C O M P O S I T E

N O N R E C I P R O C A L P O L A R I Z AT I O N WAV E

P L AT E S A N D O P T I C A L I S O L AT O R S

We provide a technique for a broadband nonreciprocal wave retarder whose
quarter-wave plate phase retardation is the same in forward and backward dir-
ections. The system is built using a number of sequential nonreciprocal wave
plates. The proposed device can also be utilized to create a broadband optical
diode, which consists of two achromatic quarter-wave plates, one reciprocal and
the other non-reciprocal, that are sandwiched between two polarizers aligned in
parallel.

7.1 introduction

For decades, reciprocal and broadband (achromatic) polarization retarders have
been a topic of intense attention in optics [171–174]. Traditionally, two or more
conventional wave plates, of the same or different materials, are combined to make
such retarders. West and Makas [5] reported achromatic combinations of plates
with various birefringence dispersions as one of the first known ideas. Destriau
and Prouteau [6] presented achromatic retarders made out of wave plates of the
same material but different thicknesses for two birefringent plates, while Panchar-
atnam offered three plates for half-wave [7] and quarter-wave [8] retarders. Harris
and colleagues later presented achromatic quarter-wave plates with six [9] and
ten identical quarter-wave plates [10]. The analogy between the polarization Jones
vector and the quantum state vector has recently been used to suggest arbitrarily
precise broadband polarization retarders [11, 12, 170].

All of the above achromatic wave plates are reciprocal, in the sense that their
function is invariant upon time inversion. However, as recently shown by Al-
Mahmoud et. al [175], wave plates retarders can be non-reciprocal whose phase-
shift retardation depends on the light propagation direction. For example, a re-
tarder with retardation of π/2 in the forward direction (quarter-wave plate) and

117
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π in the backward direction (half-wave plate) or other combination of retardance
values can be realized. The Al-Mahmoud et. al [175] non-reciprocal elements are
based on magneto-optical phenomena like the Faraday effect. The axial (as op-
posed to polar) structure of the magnetic field and magnetization vectors in this
case, as well as the associated invariance upon space inversion, are what cause
the non-reciprocity. In Al-Mahmoud et. al [175] experiment, it was shown that a
non-reciprocal Faraday rotator combined with a reciprocal rotator made of two
half-wave plates sandwiched between crossed quarter-wave plates could be used
to realize adjustable non-reciprocal wave retarders with retardation that differed
in the forward and backward directions [175].

In this chapter, we theoretically propose novel broadband polarization quarter-
wave plates, which are also nonreciprocal, with the potential to be used in broad-
band optical isolators or/and circulators for telecommunications, industrial, and
laboratory research.

7.2 background

The waveplate is a birefringent medium that modifies the polarization state by
adding a phase shift of φ between the two orthogonal polarization components.
The half-wave plate and quarter-wave plate retarders are the most popular wave-
plates, with phase shifts of π and π/2, respectively. The waveplate retarder’s Jones
matrix, whose axes are aligned with the lab axes, takes the shape of a diagonal mat-
rix,

J (φ) =

 eiφ/2 0

0 e−iφ/2

 , (7.1)

where φ = 2πL(ns − n f )/λ is the phase shift, λ is the wavelength in vacuum, n f

and ns are the refractive indices along the fast and slow axes respectively, and L is
the thickness of the waveplate. When the waveplate retarder’s axes are rotated by
an angle θ with regard to the lab axes, the Jones matrix Jθ (φ) is given by

Jθ (φ) = R (−θ) J (φ) R (θ) =

=

 eiφ/2 cos2 (θ) + e−iφ/2 sin2 (θ) −i sin (2θ) sin (φ/2)

−i sin (2θ) sin (φ/2) e−iφ/2 cos2 (θ) + eiφ/2 sin2 (θ)

 ,
(7.2)

with rotation matrix R (θ) in the horizontal-vertical (HV) basis given by

R (θ) =

 cos θ − sin θ

sin θ cos θ

 . (7.3)
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Another way to realize a retarder is to use a polarization rotator at an angle θ

sandwiched in between two quarter-wave plates rotated by angles −π/4 and π/4
with respect to the lab reference frame correspondingly [176]. The Jones matrix
J for such a sequence can be given by the product of the Jones matrices of the
quarter-wave plates and the rotator:

J = J−π/4 (π/2) R (θ) Jπ/4 (π/2) =

 eiθ 0

0 e−iθ

 = J0 (2θ) . (7.4)

The last part of Eq. (7.4) demonstrates that the whole sequence can be considered
an effective wave plate with an effective retardation φ = 2θ. If one uses Faraday
rotator (nonreciprocal device) then the effective waveplate is also nonreciprocal
[175]. Even though the two quarter-wave plates can be achromatic — an assump-
tion we make from now on — the effective wave plate is not broadband due to the
strong wavelength dependence on the Verdet constant. Our objective in the present
chapter is to construct broadband nonreciprocal wave plates using a sequence of
several nonreciprocal retarders, each with a specific phase shift and rotated by
specific angles.

7.3 composite wave plate

Now we will show three different sequences to construct nonreciprocal broadband
quarter-wave plates.

• The first approach is to combine two nonreciprocal quarter-wave plates and
one nonreciprocal half-wave plate. This composition is described by the Jones
matrix

J (ε) = Jα1 (π/2 + ε/2) Jα2 (π + ε) Jα3 (π/2 + ε/2) . (7.5)

• The second approach is to combine two nonreciprocal half-wave plates and
one nonreciprocal quarter-wave plate, characterized by the Jones matrix

J (ε) = Jα1 (π + ε) Jα2 (π + ε) Jα3 (π/2 + ε/2) . (7.6)

• The third approach is to have multiple nonreciprocal wave plates in the se-
quence, e.g., combining four nonreciprocal half-wave plates and one nonre-
ciprocal quarter-wave plate. The Jones matrix of this structure reads

J (ε) = Jα1 (π + ε) Jα2 (π + ε) Jα3 (π + ε)

× Jα4 (π + ε) Jα5 (π/2 + ε/2) . (7.7)
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Here ε and ε/2 represent the systematic deviations from the nominal retard-
ation of the half- and quarter-wave plates respectively.

For the above odd number of sequences (7.5)-(7.7) one can easily check that they
are nonreciprocal.

The composite retarder’s efficiency is evaluated in terms of the fidelity F [170],

F (ε) =
1
2

∣∣∣Tr
(

J−1
0 J (ε)

)∣∣∣ , (7.8)

where J (ε) is the achieved and J0 is the target Jones matrix. F = 1 if the two
operators J and J0 are identical, but the fidelity reduces if the two matrices differ.
In order to produce broadband nonreciprocal quarter-wave plate we determine the
rotation angles of each wave plate in Eqs. (7.5), (7.6) or (7.7) by using the Monte
Carlo method. We generate 104 sets of random angles α1, α2, α3, α4 and α5. We
select solutions, which deliver the biggest overall fidelity F (ε) in the interval of
ε ∈ [−π, π] and also, ensure a flat top. The angles are presented in the Table 7.1.
It is important to note that the parameters given in the Table 7.1 are not the only
possible. Obviously, for the wavelength at which the wave plates serve as half or
quarter-wave plates, respectively, we have ε = 0 and F (0) = 1.

Table 7.1: Calculated angles of rotation (in radians) for the three sequences of Eqs. (7.5),
(7.6), and (7.7).

sequences angles (α1; α2; . . . ; αN)

(7.5) (3.3; 1.21; 3.1)
(7.6) (3.6; 1.65; 3.9)
(7.7) (1.61;6.48;6.47;1.62;0.78)

7.4 broadband optical isolator

Another interesting case is when the sequence serves as a broadband null retarder
in one direction and a broadband half-wave plate in the other direction, which can
be archived if we combine our nonreciprocal broadband quarter-wave plate with a
commercially available broadband but reciprocal quarter-wave plate. In this case,
one can build a broadband optical isolator as shown and explained in Figure 7.1.

The working principle of the proposed optical isolator is the following. Any
light beam entering through the polarizer I will exit vertically polarized (blue ar-
ray), after passing through the achromatic reciprocal quarter-wave plate (ARQWP)
the light will be circularly polarized, then passing through the achromatic nonre-
ciprocal quarter-wave plate (ANRQWP) it will be again vertically polarized, thus



7.5 numerical calculations 121

Polarizer II

Polarizer I

V
e
rt

ic
a
l 

P
o

la
ri

z
a
ti

o
n
 

V
e
rt

ic
a
l 

P
o

la
ri

z
a
ti

o
n
 

Horizontal 

Polarization 

Figure 7.1: Scheme of the broadband optical isolator. ARQWP stands for the achromatic
reciprocal quarter-wave plate, while ANRQWP stands for the achromatic non-
reciprocal quarter-wave plate.

all light will pass polarizer II. On the way back, if the light re-enters the polarizer II
in the backward direction (red array), due to the combined effect of the ANRQWP
and ARQWP, the polarization is rotated in such a way (90 degrees) that the whole
wave is blocked by the polarizer I, so that no light can exit from right to left.

7.5 numerical calculations

We explained the basic concept of creating broadband nonreciprocal polarization
quarter-wave plates and broadband optical isolators in the previous sections. Now,
we present numerical simulations to test the effectiveness of the design we have
discussed above.

In Figure 7.2 we show the calculation for the fidelity F profiles using the three
configurations (7.5), (7.6) and (7.7) with rotation angles taken from the Table 7.1.
Obviously, the configuration (7.7) outperforms the other configurations and this
was expected because configuration (7.7) has five retarders in the series compared
to three retarders in case of (7.5) and (7.6). In theory, the fidelity profiles can be
made arbitrarily flat by increasing the number of retarders in the series. In practice,
it is not clear whether such many-retarders sequences will be useful, due to the
many optical elements in the series (Faraday rotators and quarter-wave plates),
therefore we limit our investigation to five nonreciprocal quarter-wave plates (five
Faraday rotators and ten quarter-wave plates altogether).

For broadband optical isolator simulations in this chapter, we use terbium gal-
lium garnet crystal (TGG) as it is one of the most common crystals for Faraday
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Figure 7.2: Fidelity versus systematic deviation for the composite waveplates designed by
using three configurations: Eq. (7.5) is depicted by the blue dashed line, Eq. (7.6)
by the black dotted line, and Eq. (7.7) by the red solid line. The gray dotted line
is for a quarter-wave plate with a single Faraday rotator for easy reference.

rotators. We fix the applied magnetic field to 1 T, the length of the crystal is con-
sidered to be 1 cm for the half-wave plates and 0.5 cm for the quarter-wave plates.
Up until now, there has been a lot of research done on the dispersion of the TGG
Verdet constant ν [177–179]. It was demonstrated that the following formula can
adequately represent the wavelength dependence of this crystal,

ν(λ) =
K

λ2
0 − λ2

, (7.9)

where K = 4.45 · 107 rad · nm2

T · m and λ0 = 258.2 nm is the effective transition
wavelength. TGG has optimal material properties for the Faraday rotator in the
range of 400 – 1100 nm, excluding 470 – 500 nm (the absorption window). For
most materials, the Verdet constant decreases (in absolute value) with increasing
wavelength: for TGG it is equal to 134 rad

T · m at 632 nm and 40 rad
T · m at 1064 nm. The

operating wavelength range of the Faraday isolator is constrained as a result of
this.

The performance of the optical isolators is quantified by its transmission Tf

(a portion of the input light’s intensity that passes through the isolator), back-
transmission Tb (a portion of the back-transmission light’s intensity that passes
through the isolator in the opposite direction), and isolation D. The light intensity
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measured after passing the optical diode in both the forward (I f orw) and backward
(Iback) directions determine these numbers, respectively,

Tf = I f orw/I0 =
∣∣PVJ f PV |in⟩

∣∣2 , (7.10a)

Tb = Iback/I0 = |PVJbPV |in⟩|2 , (7.10b)

where PV stands for vertical polarizers, |in⟩ is the Jones vector for the light entering
the isolator, and J f and Jb are Jones matrices for forward and backward wave plates
respectively. I0 has the meaning of the intensity of light at the beginning of the
Faraday isolator. The isolation is then determined with the formula [180, 181]

D = −10 log

[
Tb
Tf

]
. (7.11)
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Figure 7.3: Transmission and isolation properties of the optical isolators with different
numbers of wave plates in the series, compared to the isolator based on a single
rotator (blue line), vs the systematic deviation ε. The other three curves refer
to the sequences of Eqs. (7.5) depicted by a purple line, (7.6) by a red line, and
(7.7) by a black line.

The transmission and isolation profiles for the three configurations (7.5), (7.6)
and (7.7) are shown in Figures 7.3 and 7.4. One can notice that for all these com-
posite isolators both the transmission and isolation are far more efficient than that
of isolators using a single rotator (blue curve). Figure 7.3 shows the performance of
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Figure 7.4: The same as Figure 7.3 but instead of systematic deviation ε we use the
wavelength parameter.

the optical isolators under study with respect to the systematic deviation ε of the
Faraday rotators, whereas in Figure 7.4 the analogous dependence on wavelength
is presented. The long tail asymmetry seen in Figure 7.4 stems from the fact that
the Faraday rotation angle depends non-linearly on the wavelength (as seen in
Eq. (7.9)). The isolation above 10 dB over a region of 200 nm can be seen from
Figure 7.4, and it is a much broader spectral range compared to the case of using
just a single Faraday rotator (about 20 nm on the level of 10 dB).

We emphasize that the transmission and isolation curves were calculated under
the assumption of no losses in realistic realizations. Insertion losses and reflections
from the surfaces of the optical elements are the primary causes of the reduced
transmission. Losses resulting from optical element propagation would not be as
significant.

7.6 conclusions

We have presented a novel way to construct broadband nonreciprocal polarization
quarter-wave plates. The concept is based on combination of several nonreciprocal
waveplates with the optical axis of each rotated by appropriate angles. In addi-
tion, the proposed broadband nonreciprocal polarization quarter-wave plate can
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be used in combination with a broadband reciprocal polarization quarter-wave
plate to build a broadband optical isolator. The isolation bandwidth (isolation of
more than 10 dB) is almost 200 nm while the transmission bandwidth is beyond
200 nm. This isolator has the benefit of being resistant to changes in temperat-
ure, crystal length, and magnetic field. With the available optical components, an
experimental implementation should be feasible.
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G E N E R A L C O N C L U S I O N S A N D

P E R S P E C T I V E S

Composite pulses, the powerful quantum control technique from nuclear magnetic
resonance, and its wide applications have been explored in this thesis, which are
novel or have not been reported in the literature hitherto. The dissertation exhib-
its the delicate susceptibility of the method to mathematically different kinds of
target problems. The prime purpose of the thesis is to encourage a wide range
of researchers in both classical and quantum physics to leverage this magical and
versatile technique to their research tasks. Thesis addresses several specialized ap-
plications, namely in quantum computing and quantum information, quantum in-
formation processing (quantum cryptography and quantum networks), quantum
sensing, and polarization optics.

As is known, from the point of view of quantum operations, composite pulses
act as rotations on the Bloch sphere. Rotation gates tend to have experimental
errors in amplitude and pulse duration, which reduces accuracy. In this sense,
broadband-type composite pulses are of interest to eliminate the pulse area error.
Furthermore, a subclass of constant rotations, being independent of the choice
of initial state, are candidates for universal operations on the Bloch sphere. We
presented a number of this kind of broadband phase-distorionless composite pulse
sequences for three basic quantum gates — the X gate, the Hadamard gate and
arbitrary rotation gates in Chapter 2. The composite sequences contain up to 17
pulses and can compensate up to eight orders of experimental errors maintaining
ultrahigh-fidelity, equivalent to the quantum computation benchmark.

In the same fashion, we presented a number of broadband phase-distortionless
composite pulse sequences for four basic quantum gates — the Z gate, the S gate,
the T gate and arbitrary phase gates in Chapter 3. The composite sequences con-
tain up to 18 pulses and can compensate up to eight orders of experimental er-
rors maintaining ultrahigh-precision required for quantum computation. Thus, we
close the topic of single-qubit gates via composite pulses in quantum computation
and quantum information.
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From the other hand, narrowband-type composite pulses provide selective and
local spatial addressing of trapped ions or atoms in optical lattices by tightly
focused laser beams in quantum sensing. Furthermore, polarization retarder se-
quences constructed by these composite parameters are the candidates for optical
filters in polarization optics, and also this kind of composite pulses are suitable for
spatial localization in in vivo nuclear magnetic resonance spectroscopy. Passband-
type composite pulses ensure both selectivity on the edges and robustness at the
center of precision measure (fidelity, transition probability or other). We derived
narrowband and passband composite rotational quantum gates — the X gate, the
Hadamard gate and arbitrary rotation gates in Chapter 4. Two optimization meth-
ods have been used for that purpose — a strict SU(2) approach, the same scenario
as in Chapter 2, and a flexible regularization approach. This completes the package
of three main classes of composite pulses for rotation gates.

Robust ultrasmall transition probability composite pulses, which are the subject
of Chapter 5, allow to construct deterministic and highly efficient single-photon
source. This kind of composite pulses can have applications in quantum inform-
ation processing, to improve the ensemble-based protocols. We examined their
application in DLCZ protocol.

Ultrabroadband-type (ultrarobust) or ultranarrowband-type (ultrasensitive) con-
trol of quantum or classical systems is important primarily from the point of view
of the natural capabilities of the device, and what level of property can be achieved
with a given number of pulses. Derivation methodology and capabilities of these
types of composite pulses is presented in Chapter 6.

Another interesting application, now in classical physics, is the polarization op-
tics. Interestingly, quantum-classical analogy works, since rotations on the Bloch
and Poincaré spheres are mathematically the same, and Jones matrices represent
rotation matrices similar to experimental quantum gates. In Chapter 7 we presen-
ted a novel way to construct broadband nonreciprocal polarization quarter-wave
plates via composite pulse parameters. Broadband nonreciprocal polarization plate
is designed via the sequence of nonreciprocal waveplates with the optical axes ro-
tated by certain angles (composite phases), where each nonreciprocal waveplate
can be constructed using two conventional (reciprocal) quarter-wave plates and a
Faraday rotator in the middle. Furthermore, this new apparatus can be used in
combination with a broadband reciprocal polarization quarter-wave plate to build
a broadband optical isolator. Isolation of more than 10 dB is maintained in al-
most 200 nm wavelength-bandwidth, and the transmission bandwidth is beyond
200 nm. The advantage of these kind of isolators is their resistance to changes in
temperature, crystal length and magnetic field.
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